
Problem Set 1: Fitting a Line to Data

Problem 1: Getting started. Get the Python sample code ps1.py. Run it and look at
the plots that are produced:

p1-data.png p1-ols.png p1-wls.png
Read through the code to see how we read the data, run the standard least squares fitting

procedure using linear algebra, and plot the results.

Problem 2: Likelihood. The sample code contains a data set {xi, yi}Ni=1. Imagine that
each yi value is drawn from a Gaussian distribution with mean mxi + b and variance σ2

yi.
Assume the xi and σyi values are known exactly.

Write a Python function that returns the probability distribution function of the “obser-
vations” y ≡ {yi}Ni=1 given a particular set of “parameter” values (m, b). That is, evaluate
the product of the N Gaussians. This value is called the “likelihood” of the parameters
(m, b) given the data y. Your function should look like:

def straight_line_gaussian_likelihood(x, y, sigmay, m, b):

’’’

Return the likelihood of drawing data values *y* at

known values *x* given Gaussian measurement noise with standard

deviation with known *sigmay*, where the "true" y values are

*y_t = m * x + b*

x: list of x coordinates

y: list of y coordinates

sigmay: list of y uncertainties

m: scalar slope

b: scalar line intercept

Returns: scalar likelihood

’’’

compute it!

return likelihood

Run the function for the data set you’ve been given (in the sample code ps1.py) for the
parameter values (m, b) = (2.2, 30). Write your name and the output on the board.

Problem 3: MCMC. “Markov-Chain Monte-Carlo” is a general name for a class of al-
gorithms that act locally but produce a globally fair sampling of a posterior probability
distribution function in a parameter space. MCMC algorithms proceed by taking steps ran-
domly and accepting or rejecting them according to a probabilistic formula. The Metropolis–
Hastings MCMC algorithm is the following step iterated many times:

def metropolis_hastings_step(old_params, data):

new_params = sample_new_params(old_params)

new_prob = posterior_probability(new_params, data)

old_prob = posterior_probability(old_params, data)

if (new_prob / old_prob) > uniform_random_number():

return new_params

else:

return old_params

where the function sample new params(params) takes a local step in parameter space
from the input parameters params, the posterior probability function returns the
likelihood of the input parameters (because we are ignoring priors for now), the
uniform random number() function returns a random number in the range [0, 1], and we
have assumed that the sample new params function is appropriately symmetric in parame-
ter space1

Write a Metropolis–Hastings sampler and use for the posterior probability the likelihood
function you wrote in the previous problem. For the parameter sampling function, use small
Gaussian steps in (m, b). If your step-size is about right, the function will accept the new
parameters about half the time. Try to write your code to reduce the number of likelihood
function calls, and try to log relevant metrics.

Run your sampler for 105 steps, and plot the one-dimensional histograms of m and b
generated by the chain. Also plot the two-dimensional scatter plot of m against b. Also
plot the fit line with highest posterior probability on an x, y plot of the data points. If your
acceptance fraction is significantly above or below one-half, adjust your step sizes and re-run.

You should get plots like this:

1If you read the Wikipedia article on “Metropolis–Hastings”, this means that Q(x, x′) = Q(x′, x).

1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
slope m

0

1000

2000

3000

4000

5000

6000

7000

MCMC samples

20 0 20 40 60 80 100
y-intercept b

0

1000

2000

3000

4000

5000

6000

MCMC samples

20 0 20 40 60 80
y-intercept b

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

sl
o
p
e
 m

MCMC samples

0 50 100 150 200 250
x

100

200

300

400

500

600

y

Problem set 1

Problem 4: emcee. Try using the emcee sampler rather than your Metropolis–Hastings
sampler. Note that you will have to write a log posterior function. Compare the results as
you vary the number of walkers, the number of steps, and the initialization.

Problem 5: Linear least squares. Run a standard linear least square fit on the data, us-
ing properly the errors {σyi}. Overplot a Gaussian on each of the one-dimensional histograms
you plotted with the MCMC in the previous problem, where the mean of the overplotted
Gaussian is the best fit from the LLS, and the variance is the uncertainty variance from the
LLS. You will have to scale the amplitudes of the Gaussians appropriately.

Overplot on the two-dimensional scatterplot the one-sigma ellipse implied by the LLS
best-fit value and output covariance matrix.

If there are any significant discrepancies between the MCMC sampling output and the
LLS output, there is a bug in your code.

Problem 6: Challenge: outliers. Note that in the ps1.py code, the function
get data no outliers there is a range [5:] applied to the data. This excludes the first
five data points from the data1 variable. Remove this data exclusion and re-run your code.
Observe that the results are totally thrown off by the outliers.

Now assume that each observation yi is either drawn from a “foreground” distribution (a
Gaussian with mean mxi + b and variance σ2

yi, as before), or a “background” distribution.
That is, each observation is either an “inlier” or an “outlier”. This is called a “mixture

model”. Replace your likelihood function with a likelihood function that has two (weighted)
Gaussians, one Gaussian for the foreground and one for the background. For the background
model, you can just use something simple like the population mean and variance of the y
values. Run your MCMC code to sample the parameters of this new likelihood function: m
and b for the foreground, plus the mixing fraction α, where the “weight” of the foreground
model is α and the weight of the background is 1−α. Do the best-fit m and b values become
reasonable again? How does the best α you find compare with the fraction of outliers in the
data?

Problem 7: Challenge: explanation. Explain in words (some math is permitted) why
the Metropolis–Hastings local step algorithm leads (in the limit) to a fair sampling of the
posterior probability distribution function.

