Volume 1 / Fundamental Algorithms

THE ART OF
COMPUTER PROGRAMMING

THIRD EDITION

Reading, Massachusetts - Harlow, England - Menlo Park, California
Berkeley, California - Don Mills, Ontario - Sydney
Bonn - Amsterdam - Tokyo - Mexico City

TEX is a trademark of the American Mathematical Society
METAFONT is a trademark of Addison-Wesley

Library of Congress Cataloging-in-Publication Data
Knuth, Donald Ervin, 1938-

The art of computer programming : fundamental algorithms / Donald
Ervin Knuth. -- 3rd ed.

xx,650 p. 24 cm.

Includes bibliographical references and index.

ISBN 0-201-89683-4

1. Electronic digital computers--Programming. 2. Computer
algorithms. I. Title.
QA76.6.K64 1997
005.1--dc21 97-2147

CIP

Internet page http://www-cs-faculty.stanford.edu/“knuth/taocp.html contains
current information about this book and related books.

Copyright (© 1997 by Addison Wesley Longman

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-89683-4

Text printed on acid-free paper
123456789 MA 00999897
First printing, May 1997

PREFACE

Here is your book, the one your thousands of letters have asked us

to publish. It has taken us years to do, checking and rechecking countless
recipes to bring you only the best, only the interesting, only the perfect.
Now we can say, without a shadow of a doubt, that every single one of them,
if you follow the directions to the letter, will work for you exactly as well

as it did for us, even if you have never cooked before.

— McCall's Cookbook (1963)

THE PROCESS of preparing programs for a digital computer is especially attrac-
tive, not only because it can be economically and scientifically rewarding, but
also because it can be an aesthetic experience much like composing poetry or
music. This book is the first volume of a multi-volume set of books that has been
designed to train the reader in various skills that go into a programmer’s craft.

The following chapters are not meant to serve as an introduction to computer
programming; the reader is supposed to have had some previous experience. The
prerequisites are actually very simple, but a beginner requires time and practice
in order to understand the concept of a digital computer. The reader should
possess:

a) Some idea of how a stored-program digital computer works; not necessarily
the electronics, rather the manner in which instructions can be kept in the
machine’s memory and successively executed.

b) An ability to put the solutions to problems into such explicit terms that a
computer can “understand” them. (These machines have no common sense;
they do exactly as they are told, no more and no less. This fact is the
hardest concept to grasp when one first tries to use a computer.)

¢) Some knowledge of the most elementary computer techniques, such as loop-
ing (performing a set of instructions repeatedly), the use of subroutines, and
the use of indexed variables.

d) A little knowledge of common computer jargon — “memory,” “registers,”
“bits,” “Hoating point,” “overflow,” “software.” Most words not defined in
the text are given brief definitions in the index at the close of each volume.

These four prerequisites can perhaps be summed up into the single requirement
that the reader should have already written and tested at least, say, four pro-
grams for at least one computer.

I have tried to write this set of books in such a way that it will fill several
needs. In the first place, these books are reference works that summarize the

v

vi PREFACE

knowledge that has been acquired in several important fields. In the second place,
they can be used as textbooks for self-study or for college courses in the computer
and information sciences. To meet both of these objectives, I have incorporated
a large number of exercises into the text and have furnished answers for most
of them. I have also made an effort to fill the pages with facts rather than with
vague, general commentary.

This set of books is intended for people who will be more than just casually
interested in computers, yet it is by no means only for the computer specialist.
Indeed, one of my main goals has been to make these programming techniques
more accessible to the many people working in other fields who can make fruitful
use of computers, yet who cannot afford the time to locate all of the necessary
information that is buried in technical journals.

We might call the subject of these books “nonnumerical analysis.” Comput-
ers have traditionally been associated with the solution of numerical problems
such as the calculation of the roots of an equation, numerical interpolation
and integration, etc., but such topics are not treated here except in passing.
Numerical computer programming is an extremely interesting and rapidly ex-
panding field, and many books have been written about it. Since the early
1960s, however, computers have been used even more often for problems in which
numbers occur only by coincidence; the computer’s decision-making capabilities
are being used, rather than its ability to do arithmetic. We have some use
for addition and subtraction in nonnumerical problems, but we rarely feel any
need for multiplication and division. Of course, even a person who is primarily
concerned with numerical computer programming will benefit from a study of
the nonnumerical techniques, for they are present in the background of numerical
programs as well.

The results of research in nonnumerical analysis are scattered throughout
numerous technical journals. My approach has been to try to distill this vast
literature by studying the techniques that are most basic, in the sense that they
can be applied to many types of programming situations. I have attempted to
coordinate the ideas into more or less of a “theory,” as well as to show how the
theory applies to a wide variety of practical problems.

Of course, “nonnumerical analysis” is a terribly negative name for this field
of study; it is much better to have a positive, descriptive term that characterizes
the subject. “Information processing” is too broad a designation for the material
I am considering, and “programming techniques” is too narrow. Therefore I wish
to propose analysis of algorithms as an appropriate name for the subject matter
covered in these books. This name is meant to imply “the theory of the properties
of particular computer algorithms.”

The complete set of books, entitled The Art of Computer Programming, has
the following general outline:
Volume 1. Fundamental Algorithms

Chapter 1. Basic Concepts
Chapter 2. Information Structures

PREFACE vii

Volume 2. Seminumerical Algorithms

Chapter 3. Random Numbers
Chapter 4. Arithmetic

Volume 3. Sorting and Searching

Chapter 5. Sorting
Chapter 6. Searching

Volume 4. Combinatorial Algorithms

Chapter 7. Combinatorial Searching
Chapter 8. Recursion

Volume 5. Syntactical Algorithms

Chapter 9. Lexical Scanning
Chapter 10. Parsing

Volume 4 deals with such a large topic, it actually represents three separate books
(Volumes 4A, 4B, and 4C). Two additional volumes on more specialized topics
are also planned: Volume 6, The Theory of Languages; Volume 7, Compilers.

I started out in 1962 to write a single book with this sequence of chapters,
but I soon found that it was more important to treat the subjects in depth rather
than to skim over them lightly. The resulting length of the text has meant that
each chapter by itself contains more than enough material for a one-semester
college course; so it has become sensible to publish the series in separate volumes.
I know that it is strange to have only one or two chapters in an entire book, but
I have decided to retain the original chapter numbering in order to facilitate
cross-references. A shorter version of Volumes 1 through 5 is planned, intended
specifically to serve as a more general reference and/or text for undergraduate
computer courses; its contents will be a subset of the material in these books,
with the more specialized information omitted. The same chapter numbering
will be used in the abridged edition as in the complete work.

The present volume may be considered as the “intersection” of the entire set,
in the sense that it contains basic material that is used in all the other books.
Volumes 2 through 5, on the other hand, may be read independently of each
other. Volume 1 is not only a reference book to be used in connection with the
remaining volumes; it may also be used in college courses or for self-study as a
text on the subject of data structures (emphasizing the material of Chapter 2),
or as a text on the subject of discrete mathematics (emphasizing the material
of Sections 1.1, 1.2, 1.3.3, and 2.3.4), or as a text on the subject of machine-
language programming (emphasizing the material of Sections 1.3 and 1.4).

The point of view I have adopted while writing these chapters differs from
that taken in most contemporary books about computer programming in that
I am not trying to teach the reader how to use somebody else’s software. I am
concerned rather with teaching people how to write better software themselves.

My original goal was to bring readers to the frontiers of knowledge in every
subject that was treated. But it is extremely difficult to keep up with a field

viii PREFACE

that is economically profitable, and the rapid rise of computer science has made
such a dream impossible. The subject has become a vast tapestry with tens of
thousands of subtle results contributed by tens of thousands of talented people
all over the world. Therefore my new goal has been to concentrate on “classic”
techniques that are likely to remain important for many more decades, and to
describe them as well as I can. In particular, I have tried to trace the history
of each subject, and to provide a solid foundation for future progress. I have
attempted to choose terminology that is concise and consistent with current
usage. I have tried to include all of the known ideas about sequential computer
programming that are both beautiful and easy to state.

A few words are in order about the mathematical content of this set of books.
The material has been organized so that persons with no more than a knowledge
of high-school algebra may read it, skimming briefly over the more mathematical
portions; yet a reader who is mathematically inclined will learn about many
interesting mathematical techniques related to discrete mathematics. This dual
level of presentation has been achieved in part by assigning ratings to each of the
exercises so that the primarily mathematical ones are marked specifically as such,
and also by arranging most sections so that the main mathematical results are
stated before their proofs. The proofs are either left as exercises (with answers
to be found in a separate section) or they are given at the end of a section.

A reader who is interested primarily in programming rather than in the
associated mathematics may stop reading most sections as soon as the math-
ematics becomes recognizably difficult. On the other hand, a mathematically
oriented reader will find a wealth of interesting material collected here. Much of
the published mathematics about computer programming has been faulty, and
one of the purposes of this book is to instruct readers in proper mathematical
approaches to this subject. Since I profess to be a mathematician, it is my duty
to maintain mathematical integrity as well as I can.

A knowledge of elementary calculus will suffice for most of the mathematics
in these books, since most of the other theory that is needed is developed herein.
However, I do need to use deeper theorems of complex variable theory, probability
theory, number theory, etc., at times, and in such cases I refer to appropriate
textbooks where those subjects are developed.

The hardest decision that I had to make while preparing these books con-
cerned the manner in which to present the various techniques. The advantages of
flow charts and of an informal step-by-step description of an algorithm are well
known; for a discussion of this, see the article “Computer-Drawn Flowcharts”
in the ACM Communications, Vol. 6 (September 1963), pages 555-563. Yet a
formal, precise language is also necessary to specify any computer algorithm,
and I needed to decide whether to use an algebraic language, such as ALGOL
or FORTRAN, or to use a machine-oriented language for this purpose. Per-
haps many of today’s computer experts will disagree with my decision to use a
machine-oriented language, but I have become convinced that it was definitely
the correct choice, for the following reasons:

PREFACE ix

a) A programmer is greatly influenced by the language in which programs are
written; there is an overwhelming tendency to prefer constructions that are
simplest in that language, rather than those that are best for the machine.
By understanding a machine-oriented language, the programmer will tend
to use a much more efficient method; it is much closer to reality.

b) The programs we require are, with a few exceptions, all rather short, so with
a suitable computer there will be no trouble understanding the programs.

c) High-level languages are inadequate for discussing important low-level de-
tails such as coroutine linkage, random number generation, multi-precision
arithmetic, and many problems involving the efficient usage of memory.

d) A person who is more than casually interested in computers should be well
schooled in machine language, since it is a fundamental part of a computer.

e) Some machine language would be necessary anyway as output of the software
programs described in many of the examples.

f) New algebraic languages go in and out of fashion every five years or so, while
I am trying to emphasize concepts that are timeless.

From the other point of view, I admit that it is somewhat easier to write programs
in higher-level programming languages, and it is considerably easier to debug
the programs. Indeed, I have rarely used low-level machine language for my
own programs since 1970, now that computers are so large and so fast. Many
of the problems of interest to us in this book, however, are those for which
the programmer’s art is most important. For example, some combinatorial
calculations need to be repeated a trillion times, and we save about 11.6 days
of computation for every microsecond we can squeeze out of their inner loop.
Similarly, it is worthwhile to put an additional effort into the writing of software
that will be used many times each day in many computer installations, since the
software needs to be written only once.

Given the decision to use a machine-oriented language, which language
should be used? I could have chosen the language of a particular machine X,
but then those people who do not possess machine X would think this book is
only for X-people. Furthermore, machine X probably has a lot of idiosyncrasies
that are completely irrelevant to the material in this book yet which must be
explained; and in two years the manufacturer of machine X will put out machine
X + 1 or machine 10X, and machine X will no longer be of interest to anyone.

To avoid this dilemma, I have attempted to design an “ideal” computer
with very simple rules of operation (requiring, say, only an hour to learn), which
also resembles actual machines very closely. There is no reason why a student
should be afraid of learning the characteristics of more than one computer; once
one machine language has been mastered, others are easily assimilated. Indeed,
serious programmers may expect to meet many different machine languages in
the course of their careers. So the only remaining disadvantage of a mythical
machine is the difficulty of executing any programs written for it. Fortunately,
that is not really a problem, because many volunteers have come forward to

X PREFACE

write simulators for the hypothetical machine. Such simulators are ideal for
instructional purposes, since they are even easier to use than a real computer
would be.

I have attempted to cite the best early papers in each subject, together with
a sampling of more recent work. When referring to the literature, I use standard
abbreviations for the names of periodicals, except that the most commonly cited
journals are abbreviated as follows:

CACM = Communications of the Association for Computing Machinery
JACM = Journal of the Association for Computing Machinery

Comp. J. = The Computer Journal (British Computer Society)

Math. Comp. = Mathematics of Computation

AMM = American Mathematical Monthly

SICOMP = SIAM Journal on Computing

FOCS = IEEE Symposium on Foundations of Computer Science

SODA = ACM-SIAM Symposium on Discrete Algorithms

STOC = ACM Symposium on Theory of Computing

Crelle = Journal fiir die reine und angewandte Mathematik

As an example, “CACM 6 (1963), 555-563” stands for the reference given in a
preceding paragraph of this preface. I also use “CMath” to stand for the book
Concrete Mathematics, which is cited in the introduction to Section 1.2.

Much of the technical content of these books appears in the exercises. When
the idea behind a nontrivial exercise is not my own, I have attempted to give
credit to the person who originated that idea. Corresponding references to the
literature are usually given in the accompanying text of that section, or in the
answer to that exercise, but in many cases the exercises are based on unpublished
material for which no further reference can be given.

I have, of course, received assistance from a great many people during the
years | have been preparing these books, and for this I am extremely thankful.
Acknowledgments are due, first, to my wife, Jill, for her infinite patience, for
preparing several of the illustrations, and for untold further assistance of all
kinds; secondly, to Robert W. Floyd, who contributed a great deal of his time
towards the enhancement of this material during the 1960s. Thousands of other
people have also provided significant help —it would take another book just
to list their names! Many of them have kindly allowed me to make use of
hitherto unpublished work. My research at Caltech and Stanford was gener-
ously supported for many years by the National Science Foundation and the
Office of Naval Research. Addison—Wesley has provided excellent assistance and
cooperation ever since I began this project in 1962. The best way I know how
to thank everyone is to demonstrate by this publication that their input has led
to books that resemble what I think they wanted me to write.

PREFACE xi

Preface to the Third Edition

After having spent ten years developing the TEX and METAFONT systems for
computer typesetting, I am now able to fulfill the dream that I had when I began
that work, by applying those systems to The Art of Computer Programming.
At last the entire text of this book has been captured inside my personal com-
puter, in an electronic form that will make it readily adaptable to future changes
in printing and display technology. The new setup has allowed me to make
literally thousands of improvements that I have been wanting to incorporate for
a long time.

In this new edition I have gone over every word of the text, trying to retain
the youthful exuberance of my original sentences while perhaps adding some
more mature judgment. Dozens of new exercises have been added; dozens of old
exercises have been given new and improved answers.

The Art of Computer Programming is, however, still a work in progress.

Therefore some parts of this book are headed by an “under construction”
icon, to apologize for the fact that the material is not up-to-date. My files are
bursting with important material that I plan to include in the final, glorious,
fourth edition of Volume 1, perhaps 15 years from now; but I must finish
Volumes 4 and 5 first, and I do not want to delay their publication any more
than absolutely necessary.

Most of the hard work of preparing the new edition was accomplished by
Phyllis Winkler and Silvio Levy, who expertly keyboarded and edited the text
of the second edition, and by Jeffrey Oldham, who converted nearly all of the
original illustrations to METAPOST format. I have corrected every error that
alert readers detected in the second edition (as well as some mistakes that, alas,
nobody noticed); and I have tried to avoid introducing new errors in the new
material. However, I suppose some defects still remain, and I want to fix them
as soon as possible. Therefore I will cheerfully pay $2.56 to the first finder of
each technical, typographical, or historical error. The webpage cited on page iv
contains a current listing of all corrections that have been reported to me.

Stanford, California D.E. K.
April 1997

Things have changed in the past two decades.
— BILL GATES (1995)

1. Start in

2. Read
PP. Xvil—xix

3. N«1 18. Relax
No
4. Begin Yes/
Chapter N vk1—7 N<12?)
Bés{?xfeg_ Ne 6. N<27 No 16. Increase N
(g?
Yes
Yes
,
7. Begin End of chapter
new section 15. Sleep
First time
Yes
3 ”‘? . ?
(8w Yo N\ 14 Tired?)
No
= Yes 11. Skim
9.24+2=57 Tonth
No
10. Check 12. Work 13. Check
formulas exercises answers

Flow chart for reading this set of books.

10.

11.

12.

13.

Procedure for Reading
This Set of Books

. Begin reading this procedure, unless you have already begun to read it.

Continue to follow the steps faithfully. (The general form of this procedure
and its accompanying flow chart will be used throughout this book.)

. Read the Notes on the Exercises, on pages xv-xvii.

Set N equal to 1.

Begin reading Chapter N. Do not read the quotations that appear at the
beginning of the chapter.

. Is the subject of the chapter interesting to you? If so, go to step 7; if not,

go to step 6.

Is N < 27 If not, go to step 16; if so, scan through the chapter anyway.
(Chapters 1 and 2 contain important introductory material and also a review
of basic programming techniques. You should at least skim over the sections
on notation and about MIX.)

. Begin reading the next section of the chapter; if you have already reached

the end of the chapter, however, go to step 16.

. Is section number marked with “¥”7 If so, you may omit this section on

first reading (it covers a rather specialized topic that is interesting but not
essential); go back to step 7.

. Are you mathematically inclined? If math is all Greek to you, go to step 11;

otherwise proceed to step 10.

Check the mathematical derivations made in this section (and report errors
to the author). Go to step 12.

If the current section is full of mathematical computations, you had better
omit reading the derivations. However, you should become familiar with the
basic results of the section; they are usually stated near the beginning, or
in slanted type right at the very end of the hard parts.

Work the recommended exercises in this section in accordance with the hints
given in the Notes on the Exercises (which you read in step 2).

After you have worked on the exercises to your satisfaction, check your
answers with the answer printed in the corresponding answer section at the

xiii

Xiv

14.
15.
16.

17.
18.

PROCEDURE FOR READING THIS SET OF BOOKS

rear of the book (if any answer appears for that problem). Also read the
answers to the exercises you did not have time to work. Note: In most cases
it is reasonable to read the answer to exercise n before working on exercise
n + 1, so steps 12-13 are usually done simultaneously.

Are you tired? If not, go back to step 7.

Go to sleep. Then, wake up, and go back to step 7.

Increase N by one. If N = 3, 5, 7, 9, 11, or 12, begin the next volume of
this set of books.

If NV is less than or equal to 12, go back to step 4.

Congratulations. Now try to get your friends to purchase a copy of Volume 1
and to start reading it. Also, go back to step 3.

Woe be to him that reads but one book.
— GEORGE HERBERT, Jacula Prudentum, 1144 (1640)

Le défaut unique de tous les ouvrages
c'est d'étre trop longs.

— VAUVENARGUES, Réflexions, 628 (1746)

Books are a triviality. Life alone is great.
— THOMAS CARLYLE, Journal (1839)

Chapter 1— Basic Concepts

1.1.
1.2

13

1.4

Algorithms
Mathematical Prehmma.rles
1.2.1. Mathematical Induction . .
1.2.2. Numbers, Powers, and Logarithms
1.2.3. Sums and Products .
1.2.4. Integer Functions and Elementary Number Theory
1.2.5. Permutations and Factorials
1.2.6. Binomial Coefficients
1.2.7. Harmonic Numbers .
1.2.8 Fibonacci Numbers .
1.2.9 Generating Functions .
1.2.10 Analysis of an Algorithm
*1.2.11 Asymptotic Representations
*1.2.11.1 The O-notation . -
*1.2.11.2 Euler’s summation formula .
*1.2.11.3 Some asymptotic calculations .
MIX .
1.3.1. Descnptlon of MIX .
1.3.2. The MIX Assembly Language .
1.3.3. Applications to Permutations .
Some Fundamental Programming Techniques
1.4.1. Subroutines
1.4.2. Coroutines .
1.4.3. Interpretive Routmes
1.4.3.1. A MIX simulator .
*1.4.3.2. Trace routines
1.4.4. Input and Output
1.4.5. History and Bibliography

Chapter 2— Information Structures .

2.1.
2.2

Introduction . .

Linear Lists

2.2.1. Stacks, Queues, a.nd Deques
2.2.2. Sequential Allocation

2.2.3. Linked Allocation .

xviii

CONTENTS

10
11
21
27
39
45
52
75
79
87
96
107
107
111
116
124
124
144
164
186
186
193
200
202
212
215
229

232

232
238
238
244
254

CONTENTS

2.2.4. Circular Lists
2.2.5. Doubly Linked Lists .
2.2.6. Arrays and Orthogonal Lists .
2.3. Trees .
2.3.1. Tra.versmg Blna.ry Trees . . .
2.3.2. Binary Tree Representation of ’I‘rees
2.3.3. Other Representations of Trees .
2.3.4. Basic Mathematical Properties of Trees
2.3.4.1. Free trees
2.3.4.2. Oriented trees
*2.3.4.3. The “infinity lemma”
*2.3.4.4. Enumeration of trees
2.3.4.5. Path length . .
*2.3.4.6. History and b1bhography .
2.3.5. Lists and Garbage Collection . .
2.4. Multilinked Structures
2.5. Dynamic Storage Allocation
2.6. History and Bibliography

Answers to Exercises

Appendix A — Tables of Numerical Quantities .

1. Fundamental Constants (decimal)
2. Fundamental Constants (octal) . .
3. Harmonic Numbers, Bernoulli Numbers, F1bonacc1 1\Iumbers .

Appendix B—Index to Notations .

Index and Glossary

Xix

273
280
298
308
318
334
348
362
363
372
382
386
399
406
408
424
435
457

466

619

619
620
621
623

628

CHAPTER ONE

BASIC CONCEPTS

Many persons who are not conversant with mathematical studies
imagine that because the business of [Babbage’s Analytical Engine] is to
give its results in numerical notation, the nature of its processes must
consequently be arithmetical and numerical, rather than algebraical and
analytical. This is an error. The engine can arrange and combine its
numerical quantities exactly as if they were letters or any other general
symbols; and in fact it might bring out its results in algebraical notation,
were provisions made accordingly.

— AUGUSTA ADA, Countess of Lovelace (1844)

Practice yourself, for heaven’s sake, in little things,
and thence proceed to greater.

— EPICTETUS (Discourses IV.i)

1.1. ALGORITHMS

THE NOTION of an algorithm is basic to all of computer programming, so we
should begin with a careful analysis of this concept.

The word “algorithm” itself is quite interesting; at first glance it may look
as though someone intended to write “logarithm” but jumbled up the first four
letters. The word did not appear in Webster’s New World Dictionary as late as
1957; we find only the older form “algorism” with its ancient meaning, the process
of doing arithmetic using Arabic numerals. During the Middle Ages, abacists
computed on the abacus and algorists computed by algorism. By the time of the
Renaissance, the origin of this word was in doubt, and early linguists attempted
to guess at its derivation by making combinations like algiros [painful]+arithmos
[number]; others said no, the word comes from “King Algor of Castile.” Finally,
historians of mathematics found the true origin of the word algorism: It comes
from the name of a famous Persian textbook author, Abd ‘Abd Allah Muhammad
ibn Masa al-Khwarizmi (c. 825) —literally, “Father of Abdullah, Mohammed,
son of Moses, native of Khwarizm.” The Aral Sea in Central Asia was once
known as Lake Khwarizm, and the Khwarizm region is located in the Amu
River basin just south of that sea. Al-Khwarizml wrote the celebrated book
Kitab al jabr wa'l-mugabala (“Rules of restoring and equating”); another word,
“algebra,” stems from the title of his book, which was a systematic study of the
solution of linear and quadratic equations. [For notes on al-Khwarizmi’s life and
work, see H. Zemanek, Lecture Notes in Computer Science 122 (1981), 1-81.]

1

2 BASIC CONCEPTS 1.1

Gradually the form and meaning of algorism became corrupted; as ex-
plained by the Oxford English Dictionary, the word “passed through many
pseudo-etymological perversions, including a recent algorithm, in which it is
learnedly confused” with the Greek root of the word arithmetic. This change
from “algorism” to “algorithm” is not hard to understand in view of the fact
that people had forgotten the original derivation of the word. An early German
mathematical dictionary, Vollstindiges mathematisches Lexicon (Leipzig: 1747),
gave the following definition for the word Algorithmus: “Under this designation
are combined the notions of the four types of arithmetic calculations, namely
addition, multiplication, subtraction, and division.” The Latin phrase algorith-
mus infinitesimalis was at that time used to denote “ways of calculation with
infinitely small quantities, as invented by Leibniz.”

By 1950, the word algorithm was most frequently associated with Euclid’s
algorithm, a process for finding the greatest common divisor of two numbers
that appears in Euclid’s Elements (Book 7, Propositions 1 and 2). It will be
instructive to exhibit Euclid’s algorithm here:

Algorithm E (EBuclid’s algorithm). Given two positive integers m and n, find
their greatest common divisor, that is, the largest positive integer that evenly
divides both m and n.

E1l. [Find remainder.] Divide m by n and let r be the remainder. (We will have
0<r<mn)

E2. [Is it zero?] If r = 0, the algorithm terminates; n is the answer.

E3. [Reduce.] Set m < n, n < r, and go back to step E1. |

Of course, Euclid did not present his algorithm in just this manner. The
format above illustrates the style in which all of the algorithms throughout this
book will be presented.

Each algorithm we consider has been given an identifying letter (E in the
preceding example), and the steps of the algorithm are identified by this letter
followed by a number (E1, E2, E3). The chapters are divided into numbered
sections; within a section the algorithms are designated by letter only, but when
algorithms are referred to in other sections, the appropriate section number is
attached. For example, we are now in Section 1.1; within this section Euclid’s
algorithm is called Algorithm E, while in later sections it is referred to as
Algorithm 1.1E.

Each step of an algorithm, such as step E1 above, begins with a phrase in
brackets that sums up as briefly as possible the principal content of that step.
This phrase also usually appears in an accompanying flow chart, such as Fig. 1,
so that the reader will be able to picture the algorithm more readily.

After the summarizing phrase comes a description in words and symbols
of some action to be performed or some decision to be made. Parenthesized
comments, like the second sentence in step E1, may also appear. Comments are
included as explanatory information about that step, often indicating certain
invariant characteristics of the variables or the current goals at that step. They

1.1 ALGORITHMS 3

le.

v

E1l. Find remainder

E2. Is it zero? E3. Reduce

Fig. 1. Flow chart for Algorithm E.

do not specify actions that belong to the algorithm, but are meant only for the
reader’s benefit as possible aids to comprehension.

The arrow “<«” in Step E3 is the all-important replacement operation,
sometimes called assignment or substitution: “m < n” means that the value of
variable m is to be replaced by the current value of variable n. When Algorithm E
begins, the values of m and n are the originally given numbers; but when it
ends, those variables will have, in general, different values. An arrow is used
to distinguish the replacement operation from the equality relation: We will
not say, “Set m = n,” but we will perhaps ask, “Does m = n?” The “="
sign denotes a condition that can be tested, the “<«-” sign denotes an action
that can be performed. The operation of increasing n by one is denoted by
“n <~ n+1" (read “n is replaced by n 4+ 1” or “n gets n + 1”). In general,
“variable < formula” means that the formula is to be computed using the present
values of any variables appearing within it; then the result should replace the
previous value of the variable at the left of the arrow. Persons untrained in
computer work sometimes have a tendency to say “n becomes n + 1”7 and to
write “n — n + 1” for the operation of increasing n by one; this symbolism can
only lead to confusion because of its conflict with standard conventions, and it
should be avoided.

Notice that the order of actions in step E3 is important: “Set m <« n,
n < r” is quite different from “Set n < r, m < n,” since the latter would imply
that the previous value of n is lost before it can be used to set m. Thus the
latter sequence is equivalent to “Set n <- r, m « r.” When several variables
are all to be set equal to the same quantity, we can use multiple arrows; for
example, “n ¢ r, m < r” may be written “n < m ¢« r.” To interchange the
values of two variables, we can write “Exchange m < n”; this action could also
be specified by using a new variable ¢ and writing “Set t -~ m, m + n, n « ¢.”

An algorithm starts at the lowest-numbered step, usually step 1, and it
performs subsequent steps in sequential order unless otherwise specified. In step
E3, the imperative “go back to step E1” specifies the computational order in an
obvious fashion. In step E2, the action is prefaced by the condition “If r = 0”;
so if r # 0, the rest of that sentence does not apply and no action is specified.
We might have added the redundant sentence, “If 7 # 0, go on to step E3.”

The heavy vertical line “]” appearing at the end of step E3 is used to
indicate the end of an algorithm and the resumption of text.

We have now discussed virtually all the notational conventions used in the
algorithms of this book, except for a notation used to denote “subscripted” or

4 BASIC CONCEPTS 1.1

“indexed” items that are elements of an ordered array. Suppose we have n
quantities, v1,vs,. .., vn; instead of writing v; for the jth element, the notation
v[j] is often used. Similarly, ali, j] is sometimes used in preference to a doubly
subscripted notation like a;;. Sometimes multiple-letter names are used for
variables, usually set in capital letters; thus TEMP might be the name of a variable
used for temporarily holding a computed value, PRIME[K] might denote the Kth
prime number, and so on.

So much for the form of algorithms; now let us perform one. It should be
mentioned immediately that the reader should not expect to read an algorithm
as if it were part of a novel; such an attempt would make it pretty difficult to
understand what is going on. An algorithm must be seen to be believed, and the
best way to learn what an algorithm is all about is to try it. The reader should
always take pencil and paper and work through an example of each algorithm
immediately upon encountering it in the text. Usually the outline of a worked
example will be given, or else the reader can easily conjure one up. This is a
simple and painless way to gain an understanding of a given algorithm, and all
other approaches are generally unsuccessful.

Let us therefore work out an example of Algorithm E. Suppose that we are
given m = 119 and n = 544; we are ready to begin, at step E1. (The reader
should now follow the algorithm as we give a play-by-play account.) Dividing
m by n in this case is quite simple, almost too simple, since the quotient is zero
and the remainder is 119. Thus, r < 119. We proceed to step E2, and since
7 # 0 no action occurs. In step E3 we set m < 544, n < 119. It is clear that if
m < n originally, the quotient in step E1 will always be zero and the algorithm
will always proceed to interchange m and n in this rather cumbersome fashion.
We could add a new step:

EO. [Ensure m > n.] If m < n, exchange m < n.

This would make no essential change in the algorithm, except to increase its
length slightly, and to decrease its running time in about one half of all cases.

Back at step El, we find that %‘3— = 4%, so 7 ¢ 68. Again E2 is
inapplicable, and at E3 we set m < 119, n - 68. The next round sets r « 51,
and ultimately m < 68, n < 51. Next r < 17, and m < 51, n « 17. Finally,
when 51 is divided by 17, we set r < 0, so at step E2 the algorithm terminates.
The greatest common divisor of 119 and 544 is 17.

So this is an algorithm. The modern meaning for algorithm is quite similar to
that of recipe, process, method, technique, procedure, routine, rigmarole, except
that the word “algorithm” connotes something just a little different. Besides
merely being a finite set of rules that gives a sequence of operations for solving
a specific type of problem, an algorithm has five important features:

1) Finiteness. An algorithm must always terminate after a finite number of
steps. Algorithm E satisfies this condition, because after step E1 the value of r
is less than n; so if r # 0, the value of n decreases the next time step El is
encountered. A decreasing sequence of positive integers must eventually termi-
nate, so step E1 is executed only a finite number of times for any given original

1.1 ALGORITHMS 5

value of n. Note, however, that the number of steps can become arbitrarily large;
certain huge choices of m and n will cause step E1 to be executed more than a
million times.

(A procedure that has all of the characteristics of an algorithm except that it
possibly lacks finiteness may be called a computational method. Euclid originally
presented not only an algorithm for the greatest common divisor of numbers, but
also a very similar geometrical construction for the “greatest common measure”
of the lengths of two line segments; this is a computational method that does
not terminate if the given lengths are incommensurable. Another example of a
nonterminating computational method is a reactive process, which continually
interacts with its environment.)

2) Definiteness. Each step of an algorithm must be precisely defined; the ac-
tions to be carried out must be rigorously and unambiguously specified for each
case. The algorithms of this book will hopefully meet this criterion, but they
are specified in the English language, so there is a possibility that the reader
might not understand exactly what the author intended. To get around this
difficulty, formally defined programming languages or computer languages are
designed for specifying algorithms, in which every statement has a very definite
meaning. Many of the algorithms of this book will be given both in English
and in a computer language. An expression of a computational method in a
computer language is called a program.

In Algorithm E, the criterion of definiteness as applied to step E1 means that
the reader is supposed to understand exactly what it means to divide m by n
and what the remainder is. In actual fact, there is no universal agreement about
what this means if m and n are not positive integers; what is the remainder of
—8 divided by —n? What is the remainder of 59/13 divided by zero? Therefore
the criterion of definiteness means we must make sure that the values of m and n
are always positive integers whenever step El is to be executed. This is initially
true, by hypothesis; and after step E1, r is a nonnegative integer that must be
nonzero if we get to step E3. So m and n are indeed positive integers as required.

3) Input. An algorithm has zero or more inputs: quantities that are given to it
initially before the algorithm begins, or dynamically as the algorithm runs. These
inputs are taken from specified sets of objects. In Algorithm E, for example, there
are two inputs, namely m and n, both taken from the set of positive integers.

4) Output. An algorithm has one or more outputs: quantities that have a
specified relation to the inputs. Algorithm E has one output, namely n in step E2,
the greatest common divisor of the two inputs.

(We can easily prove that this number is indeed the greatest common divisor,
as follows. After step E1, we have

m=qn-+r,

for some integer gq. If = 0, then m is a multiple of n, and clearly in such a case
n is the greatest common divisor of m and n. If r # 0, note that any number
that divides both m and n must divide m — gn = r, and any number that divides

