sources found: [PointSource(RaDecPos[212.58627001650117, 17.670805010685203], Mags[6.0]), PointSource(RaDecPos[212.54012401201084, 17.677280004436525], Mags[6.0]), PointSource(RaDecPos[212.46815999735401, 17.66947000904743], Mags[6.0]), PointSource(RaDecPos[212.51582099859775, 17.785281989539037], Mags[6.0]), PointSource(RaDecPos[212.45068801466374, 17.784976997112764], Mags[6.0]), PointSource(RaDecPos[212.42721400019389, 17.781981010080656], Mags[6.0]), PointSource(RaDecPos[212.5722629890717, 17.799590992832062], Mags[6.0]), PointSource(RaDecPos[212.5578069949521, 17.789461012639183], Mags[6.0]), PointSource(RaDecPos[212.52463401400419, 17.780489003407968], Mags[6.0]), PointSource(RaDecPos[212.51807500356608, 17.741745011210742], Mags[6.0]), PointSource(RaDecPos[212.51586700837166, 17.735043989856514], Mags[6.0]), PointSource(RaDecPos[212.51471198981281, 17.73531298613922], Mags[6.0]), PointSource(RaDecPos[212.4962349898471, 17.696067996973184], Mags[6.0]), PointSource(RaDecPos[212.49314101475912, 17.725029004741245], Mags[6.0]), PointSource(RaDecPos[212.48538999242737, 17.723759003021769], Mags[6.0]), PointSource(RaDecPos[212.48470099549996, 17.760330006145495], Mags[6.0]), PointSource(RaDecPos[212.47450000591533, 17.726773986820934], Mags[6.0]), PointSource(RaDecPos[212.47564598640423, 17.777065000269854], Mags[6.0]), PointSource(RaDecPos[212.43680301036275, 17.685515998510841], Mags[6.0]), PointSource(RaDecPos[212.42973001531314, 17.694037995605193], Mags[6.0]), PointSource(RaDecPos[212.43464400787943, 17.720620996504572], Mags[6.0]), PointSource(RaDecPos[212.42691898952171, 17.708461988404846], Mags[6.0]), PointSource(RaDecPos[212.59497599750242, 17.743238011340846], Mags[6.0]), PointSource(RaDecPos[212.58645900896661, 17.719195995048278], Mags[6.0]), PointSource(RaDecPos[212.57713401568017, 17.718734992303755], Mags[6.0]), PointSource(RaDecPos[212.56955300818728, 17.711691004302544], Mags[6.0]), PointSource(RaDecPos[212.57904400625549, 17.75922000237879], Mags[6.0]), PointSource(RaDecPos[212.56266101012173, 17.722445987390898], Mags[6.0]), PointSource(RaDecPos[212.54820401059993, 17.698802987231648], Mags[6.0]), PointSource(RaDecPos[212.55521599662887, 17.751168990141483], Mags[6.0]), PointSource(RaDecPos[212.53847200407657, 17.717024007182069], Mags[6.0]), PointSource(RaDecPos[212.54250199282387, 17.745463990445494], Mags[6.0]), PointSource(RaDecPos[212.54448500046382, 17.760971004870477], Mags[6.0]), PointSource(RaDecPos[212.53583800620856, 17.748441997213277], Mags[6.0]), PointSource(RaDecPos[212.53221999343231, 17.772908989386686], Mags[6.0]), PointSource(RaDecPos[212.53093099961634, 17.767281995301154], Mags[6.0]), PointSource(RaDecPos[212.5274410040719, 17.753434988597618], Mags[6.0]), PointSource(RaDecPos[212.51508898959537, 17.696581004013861], Mags[6.0]), PointSource(RaDecPos[212.51342699558697, 17.693769005202373], Mags[6.0]), PointSource(RaDecPos[212.52046399305456, 17.732809008556668], Mags[6.0]), PointSource(RaDecPos[212.51825599392259, 17.733864002083305], Mags[6.0]), PointSource(RaDecPos[212.42721400019389, 17.781981010080656], Mags[6.0]), PointSource(RaDecPos[212.42691898952171, 17.708461988404846], Mags[6.0]), PointSource(RaDecPos[212.54624699062146, 17.764526012050251], Mags[6.0]), PointSource(RaDecPos[212.50332198592073, 17.766808009104651], Mags[6.0]), PointSource(RaDecPos[212.53093099961634, 17.767281995301154], Mags[6.0]), PointSource(RaDecPos[212.53221999343231, 17.772908989386686], Mags[6.0]), PointSource(RaDecPos[212.47564598640423, 17.777065000269854], Mags[6.0]), PointSource(RaDecPos[212.52463401400419, 17.780489003407968], Mags[6.0]), PointSource(RaDecPos[212.45068801466374, 17.784976997112764], Mags[6.0]), PointSource(RaDecPos[212.51582099859775, 17.785281989539037], Mags[6.0]), PointSource(RaDecPos[212.5578069949521, 17.789461012639183], Mags[6.0]), PointSource(RaDecPos[212.52393701103111, 17.790154990159586], Mags[6.0]), PointSource(RaDecPos[212.5722629890717, 17.799590992832062], Mags[6.0]), PointSource(RaDecPos[212.46815999735401, 17.66947000904743], Mags[6.0]), PointSource(RaDecPos[212.58627001650117, 17.670805010685203], Mags[6.0]), PointSource(RaDecPos[212.54012401201084, 17.677280004436525], Mags[6.0]), PointSource(RaDecPos[212.43680301036275, 17.685515998510841], Mags[6.0]), PointSource(RaDecPos[212.51342699558697, 17.693769005202373], Mags[6.0]), PointSource(RaDecPos[212.42973001531314, 17.694037995605193], Mags[6.0]), PointSource(RaDecPos[212.4962349898471, 17.696067996973184], Mags[6.0]), PointSource(RaDecPos[212.51508898959537, 17.696581004013861], Mags[6.0]), PointSource(RaDecPos[212.54820401059993, 17.698802987231648], Mags[6.0]), PointSource(RaDecPos[212.56955300818728, 17.711691004302544], Mags[6.0]), PointSource(RaDecPos[212.53847200407657, 17.717024007182069], Mags[6.0]), PointSource(RaDecPos[212.57713401568017, 17.718734992303755], Mags[6.0]), PointSource(RaDecPos[212.58645900896661, 17.719195995048278], Mags[6.0]), PointSource(RaDecPos[212.43464400787943, 17.720620996504572], Mags[6.0]), PointSource(RaDecPos[212.56266101012173, 17.722445987390898], Mags[6.0]), PointSource(RaDecPos[212.48538999242737, 17.723759003021769], Mags[6.0]), PointSource(RaDecPos[212.49314101475912, 17.725029004741245], Mags[6.0]), PointSource(RaDecPos[212.47450000591533, 17.726773986820934], Mags[6.0]), PointSource(RaDecPos[212.52046399305456, 17.732809008556668], Mags[6.0]), PointSource(RaDecPos[212.51825599392259, 17.733864002083305], Mags[6.0]), PointSource(RaDecPos[212.51586700837166, 17.735043989856514], Mags[6.0]), PointSource(RaDecPos[212.51471198981281, 17.73531298613922], Mags[6.0]), PointSource(RaDecPos[212.51807500356608, 17.741745011210742], Mags[6.0]), PointSource(RaDecPos[212.59497599750242, 17.743238011340846], Mags[6.0]), PointSource(RaDecPos[212.54250199282387, 17.745463990445494], Mags[6.0]), PointSource(RaDecPos[212.53583800620856, 17.748441997213277], Mags[6.0]), PointSource(RaDecPos[212.55521599662887, 17.751168990141483], Mags[6.0]), PointSource(RaDecPos[212.5274410040719, 17.753434988597618], Mags[6.0]), PointSource(RaDecPos[212.57904400625549, 17.75922000237879], Mags[6.0]), PointSource(RaDecPos[212.48470099549996, 17.760330006145495], Mags[6.0]), PointSource(RaDecPos[212.54448500046382, 17.760971004870477], Mags[6.0])] STEP 0: And the thawed params for brightness optimisation are: catalog.source0.brightness.r catalog.source1.brightness.r catalog.source2.brightness.r catalog.source3.brightness.r catalog.source4.brightness.r catalog.source5.brightness.r catalog.source6.brightness.r catalog.source7.brightness.r catalog.source8.brightness.r catalog.source9.brightness.r catalog.source10.brightness.r catalog.source11.brightness.r catalog.source12.brightness.r catalog.source13.brightness.r catalog.source14.brightness.r catalog.source15.brightness.r catalog.source16.brightness.r catalog.source17.brightness.r catalog.source18.brightness.r catalog.source19.brightness.r catalog.source20.brightness.r catalog.source21.brightness.r catalog.source22.brightness.r catalog.source23.brightness.r catalog.source24.brightness.r catalog.source25.brightness.r catalog.source26.brightness.r catalog.source27.brightness.r catalog.source28.brightness.r catalog.source29.brightness.r catalog.source30.brightness.r catalog.source31.brightness.r catalog.source32.brightness.r catalog.source33.brightness.r catalog.source34.brightness.r catalog.source35.brightness.r catalog.source36.brightness.r catalog.source37.brightness.r catalog.source38.brightness.r catalog.source39.brightness.r catalog.source40.brightness.r catalog.source41.brightness.r catalog.source42.brightness.r catalog.source43.brightness.r catalog.source44.brightness.r catalog.source45.brightness.r catalog.source46.brightness.r catalog.source47.brightness.r catalog.source48.brightness.r catalog.source49.brightness.r catalog.source50.brightness.r catalog.source51.brightness.r catalog.source52.brightness.r catalog.source53.brightness.r catalog.source54.brightness.r catalog.source55.brightness.r catalog.source56.brightness.r catalog.source57.brightness.r catalog.source58.brightness.r catalog.source59.brightness.r catalog.source60.brightness.r catalog.source61.brightness.r catalog.source62.brightness.r catalog.source63.brightness.r catalog.source64.brightness.r catalog.source65.brightness.r catalog.source66.brightness.r catalog.source67.brightness.r catalog.source68.brightness.r catalog.source69.brightness.r catalog.source70.brightness.r catalog.source71.brightness.r catalog.source72.brightness.r catalog.source73.brightness.r catalog.source74.brightness.r catalog.source75.brightness.r catalog.source76.brightness.r catalog.source77.brightness.r catalog.source78.brightness.r catalog.source79.brightness.r catalog.source80.brightness.r catalog.source81.brightness.r catalog.source82.brightness.r catalog.source83.brightness.r catalog.source84.brightness.r Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.063e+03 1.063e+03 1.0e+00 4.8e-04 1 -3.53629e+01 9.901e+02 9.901e+02 9.3e-01 3.2e-02 1.4e+00 1.0e+00 2 -3.60448e+01 9.893e+02 9.893e+02 9.3e-01 1.0e-02 1.9e+00 2.0e+00 3 -3.56141e+01 9.892e+02 9.892e+02 9.3e-01 1.4e-04 2.3e+00 3.2e+00 4 -3.56097e+01 9.892e+02 9.892e+02 9.3e-01 1.0e-05 2.7e+00 4.2e+00 5 -3.56104e+01 9.892e+02 9.892e+02 9.3e-01 2.0e-08 3.0e+00 5.2e+00 6 -3.56104e+01 9.892e+02 9.892e+02 9.3e-01 5.4e-12 3.3e+00 6.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.9e+02 anorm = 3.3e+00 arnorm = 1.8e-08 itn = 6 r2norm = 9.9e+02 acond = 6.2e+00 xnorm = 2.8e+02 RUsage is: 142968 Finding optimal step size... Finished opt2. Tderiv 0.038828 wall, 0.020000 cpu Topt 0.299985 wall, 0.280000 cpu Tstep 0.277393 wall, 0.280000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.023e+03 1.023e+03 1.0e+00 3.5e-04 1 -2.52484e+01 9.896e+02 9.896e+02 9.7e-01 2.1e-02 1.4e+00 1.0e+00 2 -2.58064e+01 9.893e+02 9.893e+02 9.7e-01 6.4e-03 1.9e+00 2.0e+00 3 -2.55207e+01 9.892e+02 9.892e+02 9.7e-01 6.1e-05 2.3e+00 3.2e+00 4 -2.55191e+01 9.892e+02 9.892e+02 9.7e-01 4.8e-06 2.7e+00 4.2e+00 5 -2.55193e+01 9.892e+02 9.892e+02 9.7e-01 9.0e-09 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.9e+02 anorm = 3.0e+00 arnorm = 2.7e-05 itn = 5 r2norm = 9.9e+02 acond = 5.2e+00 xnorm = 1.8e+02 RUsage is: 151832 Finding optimal step size... Finished opt2. Tderiv 0.022966 wall, 0.020000 cpu Topt 0.247126 wall, 0.250000 cpu Tstep 0.338869 wall, 0.340000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.941e+02 9.941e+02 1.0e+00 1.4e-04 1 -1.02950e+01 9.893e+02 9.893e+02 1.0e+00 9.0e-03 1.4e+00 1.0e+00 2 -1.05450e+01 9.892e+02 9.892e+02 1.0e+00 2.9e-03 1.9e+00 2.0e+00 3 -1.03896e+01 9.892e+02 9.892e+02 1.0e+00 6.0e-05 2.3e+00 3.2e+00 4 -1.03886e+01 9.892e+02 9.892e+02 1.0e+00 2.8e-06 2.7e+00 4.2e+00 5 -1.03888e+01 9.892e+02 9.892e+02 1.0e+00 1.5e-09 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.9e+02 anorm = 3.0e+00 arnorm = 4.6e-06 itn = 5 r2norm = 9.9e+02 acond = 5.2e+00 xnorm = 7.0e+01 RUsage is: 162336 Finding optimal step size... Finished opt2. Tderiv 0.023007 wall, 0.020000 cpu Topt 0.248824 wall, 0.240000 cpu Tstep 0.366301 wall, 0.370000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.893e+02 9.893e+02 1.0e+00 1.9e-05 1 -1.14020e+00 9.892e+02 9.892e+02 1.0e+00 1.1e-03 1.4e+00 1.0e+00 2 -1.16140e+00 9.892e+02 9.892e+02 1.0e+00 3.4e-04 1.9e+00 2.0e+00 3 -1.14801e+00 9.892e+02 9.892e+02 1.0e+00 3.1e-06 2.3e+00 3.2e+00 4 -1.14788e+00 9.892e+02 9.892e+02 1.0e+00 2.6e-07 2.7e+00 4.2e+00 5 -1.14789e+00 9.892e+02 9.892e+02 1.0e+00 6.9e-10 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.9e+02 anorm = 3.0e+00 arnorm = 2.1e-06 itn = 5 r2norm = 9.9e+02 acond = 5.2e+00 xnorm = 9.2e+00 RUsage is: 165184 Finding optimal step size... Finished opt2. Tderiv 0.023128 wall, 0.020000 cpu Topt 0.248030 wall, 0.240000 cpu Tstep 0.367635 wall, 0.370000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.892e+02 9.892e+02 1.0e+00 4.2e-06 1 -2.57165e-01 9.892e+02 9.892e+02 1.0e+00 2.4e-04 1.4e+00 1.0e+00 2 -2.61953e-01 9.892e+02 9.892e+02 1.0e+00 7.7e-05 1.9e+00 2.0e+00 3 -2.58929e-01 9.892e+02 9.892e+02 1.0e+00 7.1e-07 2.3e+00 3.2e+00 4 -2.58900e-01 9.892e+02 9.892e+02 1.0e+00 5.9e-08 2.7e+00 4.2e+00 5 -2.58903e-01 9.892e+02 9.892e+02 1.0e+00 1.6e-10 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.9e+02 anorm = 3.0e+00 arnorm = 4.6e-07 itn = 5 r2norm = 9.9e+02 acond = 5.2e+00 xnorm = 2.1e+00 RUsage is: 165984 Finding optimal step size... Finished opt2. Tderiv 0.023319 wall, 0.020000 cpu Topt 0.248091 wall, 0.240000 cpu Tstep 0.408398 wall, 0.410000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.892e+02 9.892e+02 1.0e+00 9.7e-07 1 -5.98787e-02 9.892e+02 9.892e+02 1.0e+00 5.6e-05 1.4e+00 1.0e+00 2 -6.09939e-02 9.892e+02 9.892e+02 1.0e+00 1.8e-05 1.9e+00 2.0e+00 3 -6.02896e-02 9.892e+02 9.892e+02 1.0e+00 1.7e-07 2.3e+00 3.2e+00 4 -6.02827e-02 9.892e+02 9.892e+02 1.0e+00 1.4e-08 2.7e+00 4.2e+00 5 -6.02834e-02 9.892e+02 9.892e+02 1.0e+00 3.6e-11 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.9e+02 anorm = 3.0e+00 arnorm = 1.1e-07 itn = 5 r2norm = 9.9e+02 acond = 5.2e+00 xnorm = 4.8e-01 RUsage is: 165984 Finding optimal step size... Finished opt2. Tderiv 0.023113 wall, 0.020000 cpu Topt 0.247275 wall, 0.250000 cpu Tstep 0.440842 wall, 0.440000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.892e+02 9.892e+02 1.0e+00 2.3e-07 1 -1.40360e-02 9.892e+02 9.892e+02 1.0e+00 1.3e-05 1.4e+00 1.0e+00 2 -1.42975e-02 9.892e+02 9.892e+02 1.0e+00 4.2e-06 1.9e+00 2.0e+00 3 -1.41324e-02 9.892e+02 9.892e+02 1.0e+00 3.9e-08 2.3e+00 3.2e+00 4 -1.41308e-02 9.892e+02 9.892e+02 1.0e+00 3.2e-09 2.7e+00 4.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.9e+02 anorm = 2.7e+00 arnorm = 8.6e-06 itn = 4 r2norm = 9.9e+02 acond = 4.2e+00 xnorm = 1.1e-01 RUsage is: 166016 Finding optimal step size... Finished opt2. Tderiv 0.023114 wall, 0.020000 cpu Topt 0.228560 wall, 0.230000 cpu Tstep 0.443441 wall, 0.440000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.892e+02 9.892e+02 1.0e+00 5.4e-08 1 -3.29596e-03 9.892e+02 9.892e+02 1.0e+00 3.1e-06 1.4e+00 1.0e+00 2 -3.35735e-03 9.892e+02 9.892e+02 1.0e+00 9.9e-07 1.9e+00 2.0e+00 3 -3.31859e-03 9.892e+02 9.892e+02 1.0e+00 9.1e-09 2.3e+00 3.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.9e+02 anorm = 2.3e+00 arnorm = 2.1e-05 itn = 3 r2norm = 9.9e+02 acond = 3.2e+00 xnorm = 2.7e-02 RUsage is: 166024 Finding optimal step size... Finished opt2. Tderiv 0.023166 wall, 0.020000 cpu Topt 0.211974 wall, 0.220000 cpu Tstep 0.441933 wall, 0.440000 cpu sources found: [PointSource(RaDecPos[212.58627001650117, 17.670805010685203], Mags[6.0]), PointSource(RaDecPos[212.54012401201084, 17.677280004436525], Mags[6.0]), PointSource(RaDecPos[212.46815999735401, 17.66947000904743], Mags[6.0]), PointSource(RaDecPos[212.51582099859775, 17.785281989539037], Mags[6.0]), PointSource(RaDecPos[212.45068801466374, 17.784976997112764], Mags[6.0]), PointSource(RaDecPos[212.42721400019389, 17.781981010080656], Mags[6.0]), PointSource(RaDecPos[212.5722629890717, 17.799590992832062], Mags[6.0]), PointSource(RaDecPos[212.5578069949521, 17.789461012639183], Mags[6.0]), PointSource(RaDecPos[212.52463401400419, 17.780489003407968], Mags[6.0]), PointSource(RaDecPos[212.51807500356608, 17.741745011210742], Mags[6.0]), PointSource(RaDecPos[212.51586700837166, 17.735043989856514], Mags[6.0]), PointSource(RaDecPos[212.51471198981281, 17.73531298613922], Mags[6.0]), PointSource(RaDecPos[212.4962349898471, 17.696067996973184], Mags[6.0]), PointSource(RaDecPos[212.49314101475912, 17.725029004741245], Mags[6.0]), PointSource(RaDecPos[212.48538999242737, 17.723759003021769], Mags[6.0]), PointSource(RaDecPos[212.48470099549996, 17.760330006145495], Mags[6.0]), PointSource(RaDecPos[212.47450000591533, 17.726773986820934], Mags[6.0]), PointSource(RaDecPos[212.47564598640423, 17.777065000269854], Mags[6.0]), PointSource(RaDecPos[212.43680301036275, 17.685515998510841], Mags[6.0]), PointSource(RaDecPos[212.42973001531314, 17.694037995605193], Mags[6.0]), PointSource(RaDecPos[212.43464400787943, 17.720620996504572], Mags[6.0]), PointSource(RaDecPos[212.42691898952171, 17.708461988404846], Mags[6.0]), PointSource(RaDecPos[212.59497599750242, 17.743238011340846], Mags[6.0]), PointSource(RaDecPos[212.58645900896661, 17.719195995048278], Mags[6.0]), PointSource(RaDecPos[212.57713401568017, 17.718734992303755], Mags[6.0]), PointSource(RaDecPos[212.56955300818728, 17.711691004302544], Mags[6.0]), PointSource(RaDecPos[212.57904400625549, 17.75922000237879], Mags[6.0]), PointSource(RaDecPos[212.56266101012173, 17.722445987390898], Mags[6.0]), PointSource(RaDecPos[212.54820401059993, 17.698802987231648], Mags[6.0]), PointSource(RaDecPos[212.55521599662887, 17.751168990141483], Mags[6.0]), PointSource(RaDecPos[212.53847200407657, 17.717024007182069], Mags[6.0]), PointSource(RaDecPos[212.54250199282387, 17.745463990445494], Mags[6.0]), PointSource(RaDecPos[212.54448500046382, 17.760971004870477], Mags[6.0]), PointSource(RaDecPos[212.53583800620856, 17.748441997213277], Mags[6.0]), PointSource(RaDecPos[212.53221999343231, 17.772908989386686], Mags[6.0]), PointSource(RaDecPos[212.53093099961634, 17.767281995301154], Mags[6.0]), PointSource(RaDecPos[212.5274410040719, 17.753434988597618], Mags[6.0]), PointSource(RaDecPos[212.51508898959537, 17.696581004013861], Mags[6.0]), PointSource(RaDecPos[212.51342699558697, 17.693769005202373], Mags[6.0]), PointSource(RaDecPos[212.52046399305456, 17.732809008556668], Mags[6.0]), PointSource(RaDecPos[212.51825599392259, 17.733864002083305], Mags[6.0]), PointSource(RaDecPos[212.42721400019389, 17.781981010080656], Mags[6.0]), PointSource(RaDecPos[212.42691898952171, 17.708461988404846], Mags[6.0]), PointSource(RaDecPos[212.54624699062146, 17.764526012050251], Mags[6.0]), PointSource(RaDecPos[212.50332198592073, 17.766808009104651], Mags[6.0]), PointSource(RaDecPos[212.53093099961634, 17.767281995301154], Mags[6.0]), PointSource(RaDecPos[212.53221999343231, 17.772908989386686], Mags[6.0]), PointSource(RaDecPos[212.47564598640423, 17.777065000269854], Mags[6.0]), PointSource(RaDecPos[212.52463401400419, 17.780489003407968], Mags[6.0]), PointSource(RaDecPos[212.45068801466374, 17.784976997112764], Mags[6.0]), PointSource(RaDecPos[212.51582099859775, 17.785281989539037], Mags[6.0]), PointSource(RaDecPos[212.5578069949521, 17.789461012639183], Mags[6.0]), PointSource(RaDecPos[212.52393701103111, 17.790154990159586], Mags[6.0]), PointSource(RaDecPos[212.5722629890717, 17.799590992832062], Mags[6.0]), PointSource(RaDecPos[212.46815999735401, 17.66947000904743], Mags[6.0]), PointSource(RaDecPos[212.58627001650117, 17.670805010685203], Mags[6.0]), PointSource(RaDecPos[212.54012401201084, 17.677280004436525], Mags[6.0]), PointSource(RaDecPos[212.43680301036275, 17.685515998510841], Mags[6.0]), PointSource(RaDecPos[212.51342699558697, 17.693769005202373], Mags[6.0]), PointSource(RaDecPos[212.42973001531314, 17.694037995605193], Mags[6.0]), PointSource(RaDecPos[212.4962349898471, 17.696067996973184], Mags[6.0]), PointSource(RaDecPos[212.51508898959537, 17.696581004013861], Mags[6.0]), PointSource(RaDecPos[212.54820401059993, 17.698802987231648], Mags[6.0]), PointSource(RaDecPos[212.56955300818728, 17.711691004302544], Mags[6.0]), PointSource(RaDecPos[212.53847200407657, 17.717024007182069], Mags[6.0]), PointSource(RaDecPos[212.57713401568017, 17.718734992303755], Mags[6.0]), PointSource(RaDecPos[212.58645900896661, 17.719195995048278], Mags[6.0]), PointSource(RaDecPos[212.43464400787943, 17.720620996504572], Mags[6.0]), PointSource(RaDecPos[212.56266101012173, 17.722445987390898], Mags[6.0]), PointSource(RaDecPos[212.48538999242737, 17.723759003021769], Mags[6.0]), PointSource(RaDecPos[212.49314101475912, 17.725029004741245], Mags[6.0]), PointSource(RaDecPos[212.47450000591533, 17.726773986820934], Mags[6.0]), PointSource(RaDecPos[212.52046399305456, 17.732809008556668], Mags[6.0]), PointSource(RaDecPos[212.51825599392259, 17.733864002083305], Mags[6.0]), PointSource(RaDecPos[212.51586700837166, 17.735043989856514], Mags[6.0]), PointSource(RaDecPos[212.51471198981281, 17.73531298613922], Mags[6.0]), PointSource(RaDecPos[212.51807500356608, 17.741745011210742], Mags[6.0]), PointSource(RaDecPos[212.59497599750242, 17.743238011340846], Mags[6.0]), PointSource(RaDecPos[212.54250199282387, 17.745463990445494], Mags[6.0]), PointSource(RaDecPos[212.53583800620856, 17.748441997213277], Mags[6.0]), PointSource(RaDecPos[212.55521599662887, 17.751168990141483], Mags[6.0]), PointSource(RaDecPos[212.5274410040719, 17.753434988597618], Mags[6.0]), PointSource(RaDecPos[212.57904400625549, 17.75922000237879], Mags[6.0]), PointSource(RaDecPos[212.48470099549996, 17.760330006145495], Mags[6.0]), PointSource(RaDecPos[212.54448500046382, 17.760971004870477], Mags[6.0])] STEP 0: And the thawed params for brightness optimisation are: catalog.source0.brightness.r catalog.source1.brightness.r catalog.source2.brightness.r catalog.source3.brightness.r catalog.source4.brightness.r catalog.source5.brightness.r catalog.source6.brightness.r catalog.source7.brightness.r catalog.source8.brightness.r catalog.source9.brightness.r catalog.source10.brightness.r catalog.source11.brightness.r catalog.source12.brightness.r catalog.source13.brightness.r catalog.source14.brightness.r catalog.source15.brightness.r catalog.source16.brightness.r catalog.source17.brightness.r catalog.source18.brightness.r catalog.source19.brightness.r catalog.source20.brightness.r catalog.source21.brightness.r catalog.source22.brightness.r catalog.source23.brightness.r catalog.source24.brightness.r catalog.source25.brightness.r catalog.source26.brightness.r catalog.source27.brightness.r catalog.source28.brightness.r catalog.source29.brightness.r catalog.source30.brightness.r catalog.source31.brightness.r catalog.source32.brightness.r catalog.source33.brightness.r catalog.source34.brightness.r catalog.source35.brightness.r catalog.source36.brightness.r catalog.source37.brightness.r catalog.source38.brightness.r catalog.source39.brightness.r catalog.source40.brightness.r catalog.source41.brightness.r catalog.source42.brightness.r catalog.source43.brightness.r catalog.source44.brightness.r catalog.source45.brightness.r catalog.source46.brightness.r catalog.source47.brightness.r catalog.source48.brightness.r catalog.source49.brightness.r catalog.source50.brightness.r catalog.source51.brightness.r catalog.source52.brightness.r catalog.source53.brightness.r catalog.source54.brightness.r catalog.source55.brightness.r catalog.source56.brightness.r catalog.source57.brightness.r catalog.source58.brightness.r catalog.source59.brightness.r catalog.source60.brightness.r catalog.source61.brightness.r catalog.source62.brightness.r catalog.source63.brightness.r catalog.source64.brightness.r catalog.source65.brightness.r catalog.source66.brightness.r catalog.source67.brightness.r catalog.source68.brightness.r catalog.source69.brightness.r catalog.source70.brightness.r catalog.source71.brightness.r catalog.source72.brightness.r catalog.source73.brightness.r catalog.source74.brightness.r catalog.source75.brightness.r catalog.source76.brightness.r catalog.source77.brightness.r catalog.source78.brightness.r catalog.source79.brightness.r catalog.source80.brightness.r catalog.source81.brightness.r catalog.source82.brightness.r catalog.source83.brightness.r catalog.source84.brightness.r Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.226e+03 1.226e+03 1.0e+00 4.2e-04 1 -4.08034e+01 1.142e+03 1.142e+03 9.3e-01 3.2e-02 1.4e+00 1.0e+00 2 -4.15902e+01 1.142e+03 1.142e+03 9.3e-01 1.0e-02 1.9e+00 2.0e+00 3 -4.10932e+01 1.141e+03 1.141e+03 9.3e-01 1.4e-04 2.3e+00 3.2e+00 4 -4.10881e+01 1.141e+03 1.141e+03 9.3e-01 1.0e-05 2.7e+00 4.2e+00 5 -4.10889e+01 1.141e+03 1.141e+03 9.3e-01 2.0e-08 3.0e+00 5.2e+00 6 -4.10889e+01 1.141e+03 1.141e+03 9.3e-01 5.4e-12 3.3e+00 6.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 3.3e+00 arnorm = 2.0e-08 itn = 6 r2norm = 1.1e+03 acond = 6.2e+00 xnorm = 3.2e+02 RUsage is: 142976 Finding optimal step size... Finished opt2. Tderiv 0.022117 wall, 0.020000 cpu Topt 0.271784 wall, 0.280000 cpu Tstep 0.276565 wall, 0.270000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.180e+03 1.180e+03 1.0e+00 3.0e-04 1 -2.91328e+01 1.142e+03 1.142e+03 9.7e-01 2.1e-02 1.4e+00 1.0e+00 2 -2.97766e+01 1.141e+03 1.141e+03 9.7e-01 6.4e-03 1.9e+00 2.0e+00 3 -2.94469e+01 1.141e+03 1.141e+03 9.7e-01 6.1e-05 2.3e+00 3.2e+00 4 -2.94451e+01 1.141e+03 1.141e+03 9.7e-01 4.8e-06 2.7e+00 4.2e+00 5 -2.94453e+01 1.141e+03 1.141e+03 9.7e-01 9.0e-09 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 3.0e+00 arnorm = 3.1e-05 itn = 5 r2norm = 1.1e+03 acond = 5.2e+00 xnorm = 2.1e+02 RUsage is: 151836 Finding optimal step size... Finished opt2. Tderiv 0.022669 wall, 0.020000 cpu Topt 0.244772 wall, 0.240000 cpu Tstep 0.337887 wall, 0.340000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.147e+03 1.147e+03 1.0e+00 1.2e-04 1 -1.18789e+01 1.141e+03 1.141e+03 1.0e+00 9.0e-03 1.4e+00 1.0e+00 2 -1.21673e+01 1.141e+03 1.141e+03 1.0e+00 2.9e-03 1.9e+00 2.0e+00 3 -1.19880e+01 1.141e+03 1.141e+03 1.0e+00 6.0e-05 2.3e+00 3.2e+00 4 -1.19868e+01 1.141e+03 1.141e+03 1.0e+00 2.8e-06 2.7e+00 4.2e+00 5 -1.19871e+01 1.141e+03 1.141e+03 1.0e+00 1.5e-09 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 3.0e+00 arnorm = 5.3e-06 itn = 5 r2norm = 1.1e+03 acond = 5.2e+00 xnorm = 8.1e+01 RUsage is: 161532 Finding optimal step size... Finished opt2. Tderiv 0.022580 wall, 0.020000 cpu Topt 0.248089 wall, 0.260000 cpu Tstep 0.366381 wall, 0.360000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.142e+03 1.142e+03 1.0e+00 1.6e-05 1 -1.31562e+00 1.141e+03 1.141e+03 1.0e+00 1.1e-03 1.4e+00 1.0e+00 2 -1.34008e+00 1.141e+03 1.141e+03 1.0e+00 3.4e-04 1.9e+00 2.0e+00 3 -1.32462e+00 1.141e+03 1.141e+03 1.0e+00 3.1e-06 2.3e+00 3.2e+00 4 -1.32447e+00 1.141e+03 1.141e+03 1.0e+00 2.6e-07 2.7e+00 4.2e+00 5 -1.32449e+00 1.141e+03 1.141e+03 1.0e+00 6.9e-10 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 3.0e+00 arnorm = 2.4e-06 itn = 5 r2norm = 1.1e+03 acond = 5.2e+00 xnorm = 1.1e+01 RUsage is: 165196 Finding optimal step size... Finished opt2. Tderiv 0.022603 wall, 0.020000 cpu Topt 0.244625 wall, 0.240000 cpu Tstep 0.374819 wall, 0.370000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.141e+03 1.141e+03 1.0e+00 3.6e-06 1 -2.96729e-01 1.141e+03 1.141e+03 1.0e+00 2.4e-04 1.4e+00 1.0e+00 2 -3.02254e-01 1.141e+03 1.141e+03 1.0e+00 7.7e-05 1.9e+00 2.0e+00 3 -2.98764e-01 1.141e+03 1.141e+03 1.0e+00 7.1e-07 2.3e+00 3.2e+00 4 -2.98730e-01 1.141e+03 1.141e+03 1.0e+00 5.9e-08 2.7e+00 4.2e+00 5 -2.98734e-01 1.141e+03 1.141e+03 1.0e+00 1.6e-10 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 3.0e+00 arnorm = 5.3e-07 itn = 5 r2norm = 1.1e+03 acond = 5.2e+00 xnorm = 2.4e+00 RUsage is: 165236 Finding optimal step size... Finished opt2. Tderiv 0.022557 wall, 0.020000 cpu Topt 0.244335 wall, 0.240000 cpu Tstep 0.375217 wall, 0.380000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.141e+03 1.141e+03 1.0e+00 8.4e-07 1 -6.90908e-02 1.141e+03 1.141e+03 1.0e+00 5.6e-05 1.4e+00 1.0e+00 2 -7.03775e-02 1.141e+03 1.141e+03 1.0e+00 1.8e-05 1.9e+00 2.0e+00 3 -6.95649e-02 1.141e+03 1.141e+03 1.0e+00 1.7e-07 2.3e+00 3.2e+00 4 -6.95570e-02 1.141e+03 1.141e+03 1.0e+00 1.4e-08 2.7e+00 4.2e+00 5 -6.95578e-02 1.141e+03 1.141e+03 1.0e+00 3.6e-11 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 3.0e+00 arnorm = 1.2e-07 itn = 5 r2norm = 1.1e+03 acond = 5.2e+00 xnorm = 5.6e-01 RUsage is: 166016 Finding optimal step size... Finished opt2. Tderiv 0.022584 wall, 0.020000 cpu Topt 0.243029 wall, 0.240000 cpu Tstep 0.440055 wall, 0.440000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.141e+03 1.141e+03 1.0e+00 2.0e-07 1 -1.61954e-02 1.141e+03 1.141e+03 1.0e+00 1.3e-05 1.4e+00 1.0e+00 2 -1.64971e-02 1.141e+03 1.141e+03 1.0e+00 4.2e-06 1.9e+00 2.0e+00 3 -1.63066e-02 1.141e+03 1.141e+03 1.0e+00 3.9e-08 2.3e+00 3.2e+00 4 -1.63047e-02 1.141e+03 1.141e+03 1.0e+00 3.2e-09 2.7e+00 4.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 2.7e+00 arnorm = 9.9e-06 itn = 4 r2norm = 1.1e+03 acond = 4.2e+00 xnorm = 1.3e-01 RUsage is: 166016 Finding optimal step size... Finished opt2. Tderiv 0.022597 wall, 0.020000 cpu Topt 0.224872 wall, 0.220000 cpu Tstep 0.439535 wall, 0.440000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.141e+03 1.141e+03 1.0e+00 4.6e-08 1 -3.80303e-03 1.141e+03 1.141e+03 1.0e+00 3.1e-06 1.4e+00 1.0e+00 2 -3.87387e-03 1.141e+03 1.141e+03 1.0e+00 9.9e-07 1.9e+00 2.0e+00 3 -3.82914e-03 1.141e+03 1.141e+03 1.0e+00 9.1e-09 2.3e+00 3.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 2.3e+00 arnorm = 2.4e-05 itn = 3 r2norm = 1.1e+03 acond = 3.2e+00 xnorm = 3.1e-02 RUsage is: 166016 Finding optimal step size... Finished opt2. Tderiv 0.022548 wall, 0.020000 cpu Topt 0.206737 wall, 0.210000 cpu Tstep 0.438565 wall, 0.430000 cpu STEP 1 Source 0 has initial probability: -2384095.36927 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.58627, 17.67081) with Mags: r=2.70978 brightness is Mags: r=2.70978 brightness is Mags: r=0.709781 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.58627, 17.67081) with Mags: r=0.709781 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source0.shape.re', 'catalog.source0.shape.ab', 'catalog.source0.shape.phi', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.220e+03 1.220e+03 1.0e+00 8.2e-05 1 -7.77663e+00 1.217e+03 1.217e+03 1.0e+00 2.2e-02 1.6e+00 1.0e+00 2 8.58634e+01 1.215e+03 1.215e+03 1.0e+00 1.8e-02 1.8e+00 3.1e+00 3 1.61295e+02 1.214e+03 1.214e+03 1.0e+00 6.0e-03 2.0e+00 5.4e+00 4 1.87413e+02 1.213e+03 1.213e+03 9.9e-01 7.0e-03 2.0e+00 8.1e+00 5 1.97126e+02 1.213e+03 1.213e+03 9.9e-01 8.7e-04 2.2e+00 1.0e+01 6 1.97181e+02 1.213e+03 1.213e+03 9.9e-01 2.0e-05 2.6e+00 1.2e+01 7 1.97181e+02 1.213e+03 1.213e+03 9.9e-01 9.0e-08 3.1e+00 1.4e+01 8 1.97181e+02 1.213e+03 1.213e+03 9.9e-01 1.6e-08 3.3e+00 1.6e+01 9 1.97181e+02 1.213e+03 1.213e+03 9.9e-01 3.4e-09 3.5e+00 1.7e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.2e+03 anorm = 3.5e+00 arnorm = 1.5e-05 itn = 9 r2norm = 1.2e+03 acond = 1.7e+01 xnorm = 3.2e+02 RUsage is: 286456 Finding optimal step size... Finished opt2. Tderiv 0.105327 wall, 0.100000 cpu Topt 0.358023 wall, 0.360000 cpu Tstep 0.325192 wall, 0.320000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.58627, 17.67081) with Mags: r=2.10153 and Galaxy Shape: re=4.39, ab=0.96, phi=17.3 Source 0 has final probability: -2382618.56401 Probability difference is: 1476.80525968 Source 1 has initial probability: -2382618.56401 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.54012, 17.67728) with Mags: r=3.09798 brightness is Mags: r=3.09798 brightness is Mags: r=1.09798 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.54012, 17.67728) with Mags: r=1.09798 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source1.shape.re', 'catalog.source1.shape.ab', 'catalog.source1.shape.phi', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.468e+03 1.468e+03 1.0e+00 4.0e-05 1 -5.51062e+01 1.466e+03 1.466e+03 1.0e+00 2.7e-02 1.1e+00 1.0e+00 2 -8.64254e+01 1.464e+03 1.464e+03 1.0e+00 1.7e-02 1.5e+00 2.5e+00 3 -1.08269e+02 1.464e+03 1.464e+03 1.0e+00 1.1e-02 1.9e+00 4.2e+00 4 -1.26611e+02 1.464e+03 1.464e+03 1.0e+00 2.2e-03 2.4e+00 6.0e+00 5 -1.23638e+02 1.464e+03 1.464e+03 1.0e+00 2.7e-03 2.4e+00 8.1e+00 6 -1.17978e+02 1.464e+03 1.464e+03 1.0e+00 2.3e-04 2.6e+00 1.1e+01 7 -1.18153e+02 1.464e+03 1.464e+03 1.0e+00 1.7e-04 2.8e+00 1.2e+01 8 -1.18793e+02 1.464e+03 1.464e+03 1.0e+00 2.5e-05 3.0e+00 1.4e+01 9 -1.18796e+02 1.464e+03 1.464e+03 1.0e+00 4.3e-08 3.4e+00 1.6e+01 10 -1.18796e+02 1.464e+03 1.464e+03 1.0e+00 6.2e-09 3.6e+00 1.8e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 3.6e+00 arnorm = 3.3e-05 itn = 10 r2norm = 1.5e+03 acond = 1.8e+01 xnorm = 2.1e+02 RUsage is: 303304 Finding optimal step size... Finished opt2. Tderiv 0.135515 wall, 0.130000 cpu Topt 0.412512 wall, 0.410000 cpu Tstep 0.628530 wall, 0.630000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.54012, 17.67728) with Mags: r=1.53511 and Galaxy Shape: re=98.14, ab=0.03, phi=96.0 Source 1 has final probability: -2380518.72602 Probability difference is: 2099.83798716 Source 2 has initial probability: -2380518.72602 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.46816, 17.66947) with Mags: r=3.47868 brightness is Mags: r=3.47868 brightness is Mags: r=1.47868 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.46816, 17.66947) with Mags: r=1.47868 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source2.shape.re', 'catalog.source2.shape.ab', 'catalog.source2.shape.phi', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.330e+03 1.330e+03 1.0e+00 3.6e-05 1 2.02148e+01 1.329e+03 1.329e+03 1.0e+00 1.5e-02 1.2e+00 1.0e+00 2 6.75044e+00 1.329e+03 1.329e+03 1.0e+00 5.7e-03 1.6e+00 2.2e+00 3 7.28889e-01 1.329e+03 1.329e+03 1.0e+00 4.8e-03 1.9e+00 3.5e+00 4 -9.63213e+00 1.329e+03 1.329e+03 1.0e+00 1.8e-03 2.4e+00 6.0e+00 5 -1.18200e+01 1.329e+03 1.329e+03 1.0e+00 9.2e-04 2.6e+00 7.5e+00 6 -9.29374e+00 1.329e+03 1.329e+03 1.0e+00 1.2e-03 2.6e+00 1.0e+01 7 -7.83415e+00 1.329e+03 1.329e+03 1.0e+00 6.4e-04 2.9e+00 1.3e+01 8 -7.56762e+00 1.329e+03 1.329e+03 1.0e+00 1.1e-04 3.1e+00 1.4e+01 9 -7.74924e+00 1.329e+03 1.329e+03 1.0e+00 6.1e-05 3.2e+00 1.5e+01 10 -8.02406e+00 1.329e+03 1.329e+03 1.0e+00 4.0e-05 3.3e+00 1.7e+01 11 -8.05263e+00 1.329e+03 1.329e+03 1.0e+00 4.2e-08 3.7e+00 1.9e+01 12 -8.05263e+00 1.329e+03 1.329e+03 1.0e+00 3.8e-10 3.9e+00 2.1e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.3e+03 anorm = 3.9e+00 arnorm = 2.0e-06 itn = 12 r2norm = 1.3e+03 acond = 2.1e+01 xnorm = 9.6e+01 RUsage is: 370888 Finding optimal step size... Finished opt2. Tderiv 0.131654 wall, 0.130000 cpu Topt 0.477921 wall, 0.480000 cpu Tstep 0.527039 wall, 0.520000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.46816, 17.66947) with Mags: r=7.8774 and Galaxy Shape: re=0.03, ab=0.60, phi=40.0 Source 2 has final probability: -2379689.48009 Probability difference is: 829.245928264 Source 3 has initial probability: -2379689.48009 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.51582, 17.78528) with Mags: r=3.13701 brightness is Mags: r=3.13701 brightness is Mags: r=1.13701 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.51582, 17.78528) with Mags: r=1.13701 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source3.shape.re', 'catalog.source3.shape.ab', 'catalog.source3.shape.phi', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.364e+03 1.364e+03 1.0e+00 3.9e-05 1 1.31822e+01 1.362e+03 1.362e+03 1.0e+00 2.3e-02 1.2e+00 1.0e+00 2 1.21810e+01 1.362e+03 1.362e+03 1.0e+00 7.5e-03 1.8e+00 2.3e+00 3 -4.02659e-01 1.362e+03 1.362e+03 1.0e+00 5.4e-03 2.1e+00 3.8e+00 4 -3.31824e+00 1.362e+03 1.362e+03 1.0e+00 2.3e-03 2.4e+00 6.2e+00 5 -4.31602e+00 1.362e+03 1.362e+03 1.0e+00 1.3e-03 2.5e+00 7.5e+00 6 -3.29327e+00 1.362e+03 1.362e+03 1.0e+00 1.6e-03 2.7e+00 9.5e+00 7 -1.65311e+00 1.362e+03 1.362e+03 1.0e+00 5.3e-04 3.0e+00 1.2e+01 8 -1.56399e+00 1.362e+03 1.362e+03 1.0e+00 8.6e-05 3.1e+00 1.3e+01 9 -1.61065e+00 1.362e+03 1.362e+03 1.0e+00 1.4e-05 3.3e+00 1.4e+01 10 -1.69038e+00 1.362e+03 1.362e+03 1.0e+00 1.5e-05 3.4e+00 1.6e+01 13 -1.75341e+00 1.362e+03 1.362e+03 1.0e+00 1.6e-08 4.0e+00 2.0e+01 19 -1.75341e+00 1.362e+03 1.362e+03 1.0e+00 1.6e-08 5.1e+00 3.5e+04 20 -1.75341e+00 1.362e+03 1.362e+03 1.0e+00 1.1e-09 5.2e+00 3.6e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.4e+03 anorm = 5.2e+00 arnorm = 8.1e-06 itn = 20 r2norm = 1.4e+03 acond = 3.6e+04 xnorm = 4.1e+03 RUsage is: 450064 Finding optimal step size... Finished opt2. Tderiv 0.162254 wall, 0.160000 cpu Topt 0.654322 wall, 0.660000 cpu Tstep 0.089721 wall, 0.080000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.51582, 17.78528) with Mags: r=1.13701 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 3 has final probability: -2380495.77946 Probability difference is: -806.299370404 Source 4 has initial probability: -2391649.38211 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.45069, 17.78498) with Mags: r=3.2154 brightness is Mags: r=3.2154 brightness is Mags: r=1.2154 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.45069, 17.78498) with Mags: r=1.2154 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source4.shape.re', 'catalog.source4.shape.ab', 'catalog.source4.shape.phi', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.293e+03 1.293e+03 1.0e+00 1.4e-04 1 1.03622e+01 1.283e+03 1.283e+03 9.9e-01 2.0e-02 1.4e+00 1.0e+00 2 9.06970e+00 1.282e+03 1.282e+03 9.9e-01 1.4e-02 1.6e+00 2.5e+00 3 -8.72505e+00 1.281e+03 1.281e+03 9.9e-01 9.0e-03 1.8e+00 4.3e+00 4 -3.56568e+00 1.281e+03 1.281e+03 9.9e-01 3.7e-03 2.2e+00 5.9e+00 5 -2.53016e+00 1.281e+03 1.281e+03 9.9e-01 3.1e-03 2.5e+00 7.3e+00 6 -4.09688e+00 1.281e+03 1.281e+03 9.9e-01 2.4e-03 2.8e+00 9.7e+00 7 -1.56460e+00 1.281e+03 1.281e+03 9.9e-01 5.9e-04 3.0e+00 1.2e+01 8 -1.60726e+00 1.281e+03 1.281e+03 9.9e-01 8.0e-05 3.1e+00 1.3e+01 9 -1.64722e+00 1.281e+03 1.281e+03 9.9e-01 9.4e-06 3.3e+00 1.4e+01 10 -1.74888e+00 1.281e+03 1.281e+03 9.9e-01 5.3e-06 3.3e+00 1.6e+01 11 -1.75341e+00 1.281e+03 1.281e+03 9.9e-01 7.4e-08 3.7e+00 1.8e+01 12 -1.75341e+00 1.281e+03 1.281e+03 9.9e-01 1.8e-08 3.9e+00 1.9e+01 17 -1.75341e+00 1.281e+03 1.281e+03 9.9e-01 2.2e-09 4.7e+00 3.2e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.3e+03 anorm = 4.7e+00 arnorm = 1.3e-05 itn = 17 r2norm = 1.3e+03 acond = 3.2e+04 xnorm = 4.1e+03 RUsage is: 457992 Finding optimal step size... Finished opt2. Tderiv 0.142490 wall, 0.140000 cpu Topt 0.583761 wall, 0.580000 cpu Tstep 0.085232 wall, 0.090000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.45069, 17.78498) with Mags: r=1.2154 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 4 has final probability: -2392333.02301 Probability difference is: -683.640899559 Source 5 has initial probability: -2402001.34934 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.42721, 17.78198) with Mags: r=3.58027 brightness is Mags: r=3.58027 brightness is Mags: r=1.58027 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.42721, 17.78198) with Mags: r=1.58027 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source5.shape.re', 'catalog.source5.shape.ab', 'catalog.source5.shape.phi', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.279e+03 1.279e+03 1.0e+00 1.9e-04 1 1.00901e+01 1.260e+03 1.260e+03 9.9e-01 1.3e-02 1.4e+00 1.0e+00 2 9.38062e+00 1.260e+03 1.260e+03 9.9e-01 7.8e-03 1.6e+00 2.3e+00 3 -1.38543e+00 1.260e+03 1.260e+03 9.9e-01 8.5e-03 1.9e+00 3.9e+00 4 -8.48965e+00 1.260e+03 1.260e+03 9.9e-01 4.2e-03 2.4e+00 6.5e+00 5 -5.57626e+00 1.260e+03 1.260e+03 9.9e-01 1.3e-03 2.7e+00 8.2e+00 6 -5.29018e+00 1.260e+03 1.260e+03 9.9e-01 8.9e-04 2.9e+00 9.5e+00 7 -8.41496e-01 1.260e+03 1.260e+03 9.9e-01 6.6e-04 3.0e+00 1.2e+01 8 1.87848e-02 1.260e+03 1.260e+03 9.9e-01 2.1e-04 3.1e+00 1.4e+01 9 -1.60472e+00 1.260e+03 1.260e+03 9.9e-01 9.5e-05 3.2e+00 1.6e+01 10 -1.74178e+00 1.260e+03 1.260e+03 9.9e-01 3.5e-05 3.3e+00 1.7e+01 12 -1.75341e+00 1.260e+03 1.260e+03 9.9e-01 1.8e-08 3.9e+00 2.0e+01 18 -1.75341e+00 1.260e+03 1.260e+03 9.9e-01 8.8e-10 5.0e+00 3.5e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.3e+03 anorm = 5.0e+00 arnorm = 5.5e-06 itn = 18 r2norm = 1.3e+03 acond = 3.5e+04 xnorm = 4.1e+03 RUsage is: 458776 Finding optimal step size... Finished opt2. Tderiv 0.111046 wall, 0.110000 cpu Topt 0.544872 wall, 0.540000 cpu Tstep 0.073745 wall, 0.070000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.42721, 17.78198) with Mags: r=1.58027 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 5 has final probability: -2402280.90508 Probability difference is: -279.555738376 Source 6 has initial probability: -2407287.31203 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.57226, 17.79959) with Mags: r=3.29176 brightness is Mags: r=3.29176 brightness is Mags: r=1.29176 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.57226, 17.79959) with Mags: r=1.29176 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source6.shape.re', 'catalog.source6.shape.ab', 'catalog.source6.shape.phi', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.282e+03 1.282e+03 1.0e+00 2.1e-04 1 1.01091e+01 1.259e+03 1.259e+03 9.8e-01 1.7e-02 1.4e+00 1.0e+00 2 9.22855e+00 1.258e+03 1.258e+03 9.8e-01 1.2e-02 1.6e+00 2.4e+00 3 -4.46169e+00 1.258e+03 1.258e+03 9.8e-01 1.1e-02 1.9e+00 4.2e+00 4 -7.69036e+00 1.258e+03 1.258e+03 9.8e-01 4.7e-03 2.4e+00 6.3e+00 5 -3.30595e+00 1.258e+03 1.258e+03 9.8e-01 2.5e-03 2.7e+00 7.9e+00 6 -4.95865e+00 1.257e+03 1.257e+03 9.8e-01 2.4e-03 2.8e+00 9.9e+00 7 -1.04260e+00 1.257e+03 1.257e+03 9.8e-01 7.9e-04 3.0e+00 1.3e+01 8 -1.14561e+00 1.257e+03 1.257e+03 9.8e-01 8.8e-05 3.1e+00 1.4e+01 9 -1.41061e+00 1.257e+03 1.257e+03 9.8e-01 4.2e-05 3.2e+00 1.5e+01 10 -1.75015e+00 1.257e+03 1.257e+03 9.8e-01 9.4e-06 3.3e+00 1.7e+01 12 -1.75341e+00 1.257e+03 1.257e+03 9.8e-01 1.8e-08 3.9e+00 2.0e+01 13 -1.75341e+00 1.257e+03 1.257e+03 9.8e-01 8.5e-08 3.9e+00 2.8e+01 18 -1.75341e+00 1.257e+03 1.257e+03 9.8e-01 1.2e-09 5.0e+00 3.4e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.3e+03 anorm = 5.0e+00 arnorm = 7.8e-06 itn = 18 r2norm = 1.3e+03 acond = 3.4e+04 xnorm = 4.1e+03 RUsage is: 475760 Finding optimal step size... Finished opt2. Tderiv 0.125918 wall, 0.130000 cpu Topt 0.636545 wall, 0.630000 cpu Tstep 0.077438 wall, 0.090000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.57226, 17.79959) with Mags: r=1.29176 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 6 has final probability: -2407792.13069 Probability difference is: -504.81866517 Source 7 has initial probability: -2416280.46673 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.55781, 17.78946) with Mags: r=2.84323 brightness is Mags: r=2.84323 brightness is Mags: r=0.843228 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.55781, 17.78946) with Mags: r=0.843228 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source7.shape.re', 'catalog.source7.shape.ab', 'catalog.source7.shape.phi', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.323e+03 1.323e+03 1.0e+00 2.2e-04 1 1.00460e+01 1.294e+03 1.294e+03 9.8e-01 2.3e-02 1.4e+00 1.0e+00 2 9.73275e+00 1.293e+03 1.293e+03 9.8e-01 1.9e-02 1.7e+00 2.2e+00 3 3.69091e+00 1.292e+03 1.292e+03 9.8e-01 9.7e-03 2.2e+00 4.3e+00 4 -7.70694e+00 1.292e+03 1.292e+03 9.8e-01 4.3e-03 2.4e+00 6.4e+00 5 -1.89723e+00 1.292e+03 1.292e+03 9.8e-01 2.9e-03 2.6e+00 7.7e+00 6 -4.30988e+00 1.291e+03 1.291e+03 9.8e-01 2.8e-03 2.8e+00 1.0e+01 7 -1.37628e+00 1.291e+03 1.291e+03 9.8e-01 7.0e-04 3.0e+00 1.3e+01 8 -1.47461e+00 1.291e+03 1.291e+03 9.8e-01 9.7e-05 3.1e+00 1.4e+01 9 -1.54764e+00 1.291e+03 1.291e+03 9.8e-01 3.7e-05 3.3e+00 1.5e+01 10 -1.59216e+00 1.291e+03 1.291e+03 9.8e-01 1.5e-05 3.5e+00 1.6e+01 13 -1.75341e+00 1.291e+03 1.291e+03 9.8e-01 1.7e-08 4.0e+00 2.1e+01 19 -1.75341e+00 1.291e+03 1.291e+03 9.8e-01 1.1e-09 5.1e+00 3.5e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.3e+03 anorm = 5.1e+00 arnorm = 7.1e-06 itn = 19 r2norm = 1.3e+03 acond = 3.5e+04 xnorm = 4.1e+03 RUsage is: 499080 Finding optimal step size... Finished opt2. Tderiv 0.152842 wall, 0.150000 cpu Topt 0.722882 wall, 0.720000 cpu Tstep 0.084673 wall, 0.080000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.55781, 17.78946) with Mags: r=0.843228 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 7 has final probability: -2417122.99743 Probability difference is: -842.530701 Source 8 has initial probability: -2436827.8821 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.52463, 17.78049) with Mags: r=3.16546 brightness is Mags: r=3.16546 brightness is Mags: r=1.16546 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.52463, 17.78049) with Mags: r=1.16546 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source8.shape.re', 'catalog.source8.shape.ab', 'catalog.source8.shape.phi', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.466e+03 1.466e+03 1.0e+00 2.2e-04 1 1.00377e+01 1.426e+03 1.426e+03 9.7e-01 1.6e-02 1.4e+00 1.0e+00 2 9.15644e+00 1.425e+03 1.425e+03 9.7e-01 1.3e-02 1.6e+00 2.5e+00 3 -1.03890e+01 1.425e+03 1.425e+03 9.7e-01 1.4e-02 1.9e+00 4.7e+00 4 -1.49385e+01 1.424e+03 1.424e+03 9.7e-01 5.7e-03 2.3e+00 7.3e+00 5 -8.65086e+00 1.424e+03 1.424e+03 9.7e-01 1.8e-03 2.7e+00 8.9e+00 6 -7.54363e+00 1.424e+03 1.424e+03 9.7e-01 1.2e-03 2.8e+00 1.0e+01 7 -2.42730e+00 1.424e+03 1.424e+03 9.7e-01 5.4e-04 3.0e+00 1.2e+01 8 -1.72690e+00 1.424e+03 1.424e+03 9.7e-01 2.1e-04 3.2e+00 1.3e+01 9 -1.68665e+00 1.424e+03 1.424e+03 9.7e-01 2.7e-05 3.4e+00 1.5e+01 10 -1.70071e+00 1.424e+03 1.424e+03 9.7e-01 5.2e-06 3.6e+00 1.6e+01 13 -1.75341e+00 1.424e+03 1.424e+03 9.7e-01 6.5e-08 4.0e+00 2.0e+01 14 -1.75341e+00 1.424e+03 1.424e+03 9.7e-01 1.5e-08 4.3e+00 2.1e+01 18 -1.75341e+00 1.424e+03 1.424e+03 9.7e-01 3.5e-08 4.8e+00 3.3e+04 19 -1.75341e+00 1.424e+03 1.424e+03 9.7e-01 1.4e-08 5.0e+00 3.5e+04 20 -1.75341e+00 1.424e+03 1.424e+03 9.7e-01 1.9e-09 5.2e+00 3.6e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.4e+03 anorm = 5.2e+00 arnorm = 1.4e-05 itn = 20 r2norm = 1.4e+03 acond = 3.6e+04 xnorm = 4.1e+03 RUsage is: 520272 Finding optimal step size... Finished opt2. Tderiv 0.172196 wall, 0.170000 cpu Topt 0.786626 wall, 0.780000 cpu Tstep 0.091144 wall, 0.090000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.52463, 17.78049) with Mags: r=1.16546 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 8 has final probability: -2437342.80095 Probability difference is: -514.918848372 Source 9 has initial probability: -2448177.16175 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.51808, 17.74175) with Mags: r=2.6654 brightness is Mags: r=2.6654 brightness is Mags: r=0.665402 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.51808, 17.74175) with Mags: r=0.665402 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source9.shape.re', 'catalog.source9.shape.ab', 'catalog.source9.shape.phi', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.981e+03 1.981e+03 1.0e+00 2.6e-04 1 1.12835e+01 1.821e+03 1.821e+03 9.2e-01 2.4e-01 1.3e+00 1.0e+00 2 1.54834e+01 1.693e+03 1.693e+03 8.5e-01 1.9e-01 1.7e+00 2.7e+00 3 -1.90597e+00 1.593e+03 1.593e+03 8.0e-01 1.0e-01 2.2e+00 4.7e+00 4 -7.96466e+00 1.548e+03 1.548e+03 7.8e-01 3.3e-02 2.5e+00 6.4e+00 5 1.48605e+00 1.542e+03 1.542e+03 7.8e-01 3.8e-02 2.6e+00 7.6e+00 6 5.82585e+00 1.526e+03 1.526e+03 7.7e-01 1.7e-02 2.9e+00 1.1e+01 7 -8.73460e+00 1.524e+03 1.524e+03 7.7e-01 4.8e-03 3.1e+00 1.2e+01 8 -1.50893e+00 1.523e+03 1.523e+03 7.7e-01 3.7e-04 3.3e+00 1.4e+01 9 -1.59115e+00 1.523e+03 1.523e+03 7.7e-01 1.1e-04 3.5e+00 1.5e+01 10 -1.67000e+00 1.523e+03 1.523e+03 7.7e-01 2.8e-05 3.7e+00 1.6e+01 15 -1.75341e+00 1.523e+03 1.523e+03 7.7e-01 1.3e-08 4.5e+00 2.3e+01 19 -1.75341e+00 1.523e+03 1.523e+03 7.7e-01 7.3e-08 5.1e+00 3.5e+04 20 -1.75341e+00 1.523e+03 1.523e+03 7.7e-01 1.5e-09 5.3e+00 3.6e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 5.3e+00 arnorm = 1.2e-05 itn = 20 r2norm = 1.5e+03 acond = 3.6e+04 xnorm = 4.9e+03 RUsage is: 550700 Finding optimal step size... Finished opt2. Tderiv 0.209284 wall, 0.210000 cpu Topt 0.912797 wall, 0.910000 cpu Tstep 0.114590 wall, 0.120000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.51808, 17.74175) with Mags: r=0.665402 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 9 has final probability: -2434923.12456 Probability difference is: 13254.0371997 FINISHED SWITCHING TO GALAXIES Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 97 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 194 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.988e+03 1.988e+03 1.0e+00 2.6e-04 1 1.12669e+01 1.828e+03 1.828e+03 9.2e-01 2.4e-01 1.3e+00 1.0e+00 2 -9.42285e+00 1.701e+03 1.701e+03 8.6e-01 1.9e-01 1.7e+00 2.7e+00 3 1.30871e+01 1.602e+03 1.602e+03 8.1e-01 1.1e-01 2.2e+00 4.7e+00 4 -2.74047e+01 1.560e+03 1.560e+03 7.8e-01 5.3e-02 2.5e+00 6.4e+00 5 4.17888e+00 1.553e+03 1.553e+03 7.8e-01 2.6e-02 2.9e+00 7.9e+00 6 -8.53180e+00 1.541e+03 1.541e+03 7.8e-01 3.7e-02 3.1e+00 1.1e+01 7 -2.57652e+00 1.533e+03 1.533e+03 7.7e-01 1.1e-02 3.4e+00 1.3e+01 8 -2.50535e+00 1.532e+03 1.532e+03 7.7e-01 1.7e-03 3.6e+00 1.5e+01 9 -2.39436e+00 1.532e+03 1.532e+03 7.7e-01 5.5e-04 3.9e+00 1.6e+01 10 -2.28023e+00 1.532e+03 1.532e+03 7.7e-01 3.1e-04 4.1e+00 1.7e+01 21 -1.64001e+00 1.532e+03 1.532e+03 7.7e-01 9.0e-08 5.3e+00 3.7e+01 22 -1.63951e+00 1.532e+03 1.532e+03 7.7e-01 4.6e-08 5.4e+00 3.9e+01 23 -1.63935e+00 1.532e+03 1.532e+03 7.7e-01 5.0e-09 5.5e+00 4.0e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 5.5e+00 arnorm = 4.2e-05 itn = 23 r2norm = 1.5e+03 acond = 4.0e+01 xnorm = 2.7e+03 RUsage is: 605668 Finding optimal step size... Finished opt2. Tderiv 0.274790 wall, 0.270000 cpu Topt 1.190638 wall, 1.170000 cpu Tstep 1.229133 wall, 1.240000 cpu Tractor: Finding derivs... Finding optimal update direction... sources found: [PointSource(RaDecPos[212.58627001650117, 17.670805010685203], Mags[6.0]), PointSource(RaDecPos[212.54012401201084, 17.677280004436525], Mags[6.0]), PointSource(RaDecPos[212.46815999735401, 17.66947000904743], Mags[6.0]), PointSource(RaDecPos[212.51582099859775, 17.785281989539037], Mags[6.0]), PointSource(RaDecPos[212.45068801466374, 17.784976997112764], Mags[6.0]), PointSource(RaDecPos[212.42721400019389, 17.781981010080656], Mags[6.0]), PointSource(RaDecPos[212.5722629890717, 17.799590992832062], Mags[6.0]), PointSource(RaDecPos[212.5578069949521, 17.789461012639183], Mags[6.0]), PointSource(RaDecPos[212.52463401400419, 17.780489003407968], Mags[6.0]), PointSource(RaDecPos[212.51807500356608, 17.741745011210742], Mags[6.0]), PointSource(RaDecPos[212.51586700837166, 17.735043989856514], Mags[6.0]), PointSource(RaDecPos[212.51471198981281, 17.73531298613922], Mags[6.0]), PointSource(RaDecPos[212.4962349898471, 17.696067996973184], Mags[6.0]), PointSource(RaDecPos[212.49314101475912, 17.725029004741245], Mags[6.0]), PointSource(RaDecPos[212.48538999242737, 17.723759003021769], Mags[6.0]), PointSource(RaDecPos[212.48470099549996, 17.760330006145495], Mags[6.0]), PointSource(RaDecPos[212.47450000591533, 17.726773986820934], Mags[6.0]), PointSource(RaDecPos[212.47564598640423, 17.777065000269854], Mags[6.0]), PointSource(RaDecPos[212.43680301036275, 17.685515998510841], Mags[6.0]), PointSource(RaDecPos[212.42973001531314, 17.694037995605193], Mags[6.0]), PointSource(RaDecPos[212.43464400787943, 17.720620996504572], Mags[6.0]), PointSource(RaDecPos[212.42691898952171, 17.708461988404846], Mags[6.0]), PointSource(RaDecPos[212.59497599750242, 17.743238011340846], Mags[6.0]), PointSource(RaDecPos[212.58645900896661, 17.719195995048278], Mags[6.0]), PointSource(RaDecPos[212.57713401568017, 17.718734992303755], Mags[6.0]), PointSource(RaDecPos[212.56955300818728, 17.711691004302544], Mags[6.0]), PointSource(RaDecPos[212.57904400625549, 17.75922000237879], Mags[6.0]), PointSource(RaDecPos[212.56266101012173, 17.722445987390898], Mags[6.0]), PointSource(RaDecPos[212.54820401059993, 17.698802987231648], Mags[6.0]), PointSource(RaDecPos[212.55521599662887, 17.751168990141483], Mags[6.0]), PointSource(RaDecPos[212.53847200407657, 17.717024007182069], Mags[6.0]), PointSource(RaDecPos[212.54250199282387, 17.745463990445494], Mags[6.0]), PointSource(RaDecPos[212.54448500046382, 17.760971004870477], Mags[6.0]), PointSource(RaDecPos[212.53583800620856, 17.748441997213277], Mags[6.0]), PointSource(RaDecPos[212.53221999343231, 17.772908989386686], Mags[6.0]), PointSource(RaDecPos[212.53093099961634, 17.767281995301154], Mags[6.0]), PointSource(RaDecPos[212.5274410040719, 17.753434988597618], Mags[6.0]), PointSource(RaDecPos[212.51508898959537, 17.696581004013861], Mags[6.0]), PointSource(RaDecPos[212.51342699558697, 17.693769005202373], Mags[6.0]), PointSource(RaDecPos[212.52046399305456, 17.732809008556668], Mags[6.0]), PointSource(RaDecPos[212.51825599392259, 17.733864002083305], Mags[6.0]), PointSource(RaDecPos[212.42721400019389, 17.781981010080656], Mags[6.0]), PointSource(RaDecPos[212.42691898952171, 17.708461988404846], Mags[6.0]), PointSource(RaDecPos[212.54624699062146, 17.764526012050251], Mags[6.0]), PointSource(RaDecPos[212.50332198592073, 17.766808009104651], Mags[6.0]), PointSource(RaDecPos[212.53093099961634, 17.767281995301154], Mags[6.0]), PointSource(RaDecPos[212.53221999343231, 17.772908989386686], Mags[6.0]), PointSource(RaDecPos[212.47564598640423, 17.777065000269854], Mags[6.0]), PointSource(RaDecPos[212.52463401400419, 17.780489003407968], Mags[6.0]), PointSource(RaDecPos[212.45068801466374, 17.784976997112764], Mags[6.0]), PointSource(RaDecPos[212.51582099859775, 17.785281989539037], Mags[6.0]), PointSource(RaDecPos[212.5578069949521, 17.789461012639183], Mags[6.0]), PointSource(RaDecPos[212.52393701103111, 17.790154990159586], Mags[6.0]), PointSource(RaDecPos[212.5722629890717, 17.799590992832062], Mags[6.0]), PointSource(RaDecPos[212.46815999735401, 17.66947000904743], Mags[6.0]), PointSource(RaDecPos[212.58627001650117, 17.670805010685203], Mags[6.0]), PointSource(RaDecPos[212.54012401201084, 17.677280004436525], Mags[6.0]), PointSource(RaDecPos[212.43680301036275, 17.685515998510841], Mags[6.0]), PointSource(RaDecPos[212.51342699558697, 17.693769005202373], Mags[6.0]), PointSource(RaDecPos[212.42973001531314, 17.694037995605193], Mags[6.0]), PointSource(RaDecPos[212.4962349898471, 17.696067996973184], Mags[6.0]), PointSource(RaDecPos[212.51508898959537, 17.696581004013861], Mags[6.0]), PointSource(RaDecPos[212.54820401059993, 17.698802987231648], Mags[6.0]), PointSource(RaDecPos[212.56955300818728, 17.711691004302544], Mags[6.0]), PointSource(RaDecPos[212.53847200407657, 17.717024007182069], Mags[6.0]), PointSource(RaDecPos[212.57713401568017, 17.718734992303755], Mags[6.0]), PointSource(RaDecPos[212.58645900896661, 17.719195995048278], Mags[6.0]), PointSource(RaDecPos[212.43464400787943, 17.720620996504572], Mags[6.0]), PointSource(RaDecPos[212.56266101012173, 17.722445987390898], Mags[6.0]), PointSource(RaDecPos[212.48538999242737, 17.723759003021769], Mags[6.0]), PointSource(RaDecPos[212.49314101475912, 17.725029004741245], Mags[6.0]), PointSource(RaDecPos[212.47450000591533, 17.726773986820934], Mags[6.0]), PointSource(RaDecPos[212.52046399305456, 17.732809008556668], Mags[6.0]), PointSource(RaDecPos[212.51825599392259, 17.733864002083305], Mags[6.0]), PointSource(RaDecPos[212.51586700837166, 17.735043989856514], Mags[6.0]), PointSource(RaDecPos[212.51471198981281, 17.73531298613922], Mags[6.0]), PointSource(RaDecPos[212.51807500356608, 17.741745011210742], Mags[6.0]), PointSource(RaDecPos[212.59497599750242, 17.743238011340846], Mags[6.0]), PointSource(RaDecPos[212.54250199282387, 17.745463990445494], Mags[6.0]), PointSource(RaDecPos[212.53583800620856, 17.748441997213277], Mags[6.0]), PointSource(RaDecPos[212.55521599662887, 17.751168990141483], Mags[6.0]), PointSource(RaDecPos[212.5274410040719, 17.753434988597618], Mags[6.0]), PointSource(RaDecPos[212.57904400625549, 17.75922000237879], Mags[6.0]), PointSource(RaDecPos[212.48470099549996, 17.760330006145495], Mags[6.0]), PointSource(RaDecPos[212.54448500046382, 17.760971004870477], Mags[6.0])] STEP 0: And the thawed params for brightness optimisation are: catalog.source0.brightness.r catalog.source1.brightness.r catalog.source2.brightness.r catalog.source3.brightness.r catalog.source4.brightness.r catalog.source5.brightness.r catalog.source6.brightness.r catalog.source7.brightness.r catalog.source8.brightness.r catalog.source9.brightness.r catalog.source10.brightness.r catalog.source11.brightness.r catalog.source12.brightness.r catalog.source13.brightness.r catalog.source14.brightness.r catalog.source15.brightness.r catalog.source16.brightness.r catalog.source17.brightness.r catalog.source18.brightness.r catalog.source19.brightness.r catalog.source20.brightness.r catalog.source21.brightness.r catalog.source22.brightness.r catalog.source23.brightness.r catalog.source24.brightness.r catalog.source25.brightness.r catalog.source26.brightness.r catalog.source27.brightness.r catalog.source28.brightness.r catalog.source29.brightness.r catalog.source30.brightness.r catalog.source31.brightness.r catalog.source32.brightness.r catalog.source33.brightness.r catalog.source34.brightness.r catalog.source35.brightness.r catalog.source36.brightness.r catalog.source37.brightness.r catalog.source38.brightness.r catalog.source39.brightness.r catalog.source40.brightness.r catalog.source41.brightness.r catalog.source42.brightness.r catalog.source43.brightness.r catalog.source44.brightness.r catalog.source45.brightness.r catalog.source46.brightness.r catalog.source47.brightness.r catalog.source48.brightness.r catalog.source49.brightness.r catalog.source50.brightness.r catalog.source51.brightness.r catalog.source52.brightness.r catalog.source53.brightness.r catalog.source54.brightness.r catalog.source55.brightness.r catalog.source56.brightness.r catalog.source57.brightness.r catalog.source58.brightness.r catalog.source59.brightness.r catalog.source60.brightness.r catalog.source61.brightness.r catalog.source62.brightness.r catalog.source63.brightness.r catalog.source64.brightness.r catalog.source65.brightness.r catalog.source66.brightness.r catalog.source67.brightness.r catalog.source68.brightness.r catalog.source69.brightness.r catalog.source70.brightness.r catalog.source71.brightness.r catalog.source72.brightness.r catalog.source73.brightness.r catalog.source74.brightness.r catalog.source75.brightness.r catalog.source76.brightness.r catalog.source77.brightness.r catalog.source78.brightness.r catalog.source79.brightness.r catalog.source80.brightness.r catalog.source81.brightness.r catalog.source82.brightness.r catalog.source83.brightness.r catalog.source84.brightness.r Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.099e+03 1.099e+03 1.0e+00 4.7e-04 1 -3.65823e+01 1.024e+03 1.024e+03 9.3e-01 3.2e-02 1.4e+00 1.0e+00 2 -3.72877e+01 1.023e+03 1.023e+03 9.3e-01 1.0e-02 1.9e+00 2.0e+00 3 -3.68422e+01 1.023e+03 1.023e+03 9.3e-01 1.4e-04 2.3e+00 3.2e+00 4 -3.68376e+01 1.023e+03 1.023e+03 9.3e-01 1.0e-05 2.7e+00 4.2e+00 5 -3.68383e+01 1.023e+03 1.023e+03 9.3e-01 2.0e-08 3.0e+00 5.2e+00 6 -3.68383e+01 1.023e+03 1.023e+03 9.3e-01 5.4e-12 3.3e+00 6.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 3.3e+00 arnorm = 1.8e-08 itn = 6 r2norm = 1.0e+03 acond = 6.2e+00 xnorm = 2.9e+02 RUsage is: 142972 Finding optimal step size... Finished opt2. Tderiv 0.022092 wall, 0.020000 cpu Topt 0.266258 wall, 0.270000 cpu Tstep 0.269800 wall, 0.270000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.058e+03 1.058e+03 1.0e+00 3.4e-04 1 -2.61191e+01 1.024e+03 1.024e+03 9.7e-01 2.1e-02 1.4e+00 1.0e+00 2 -2.66962e+01 1.023e+03 1.023e+03 9.7e-01 6.4e-03 1.9e+00 2.0e+00 3 -2.64007e+01 1.023e+03 1.023e+03 9.7e-01 6.1e-05 2.3e+00 3.2e+00 4 -2.63990e+01 1.023e+03 1.023e+03 9.7e-01 4.8e-06 2.7e+00 4.2e+00 5 -2.63993e+01 1.023e+03 1.023e+03 9.7e-01 9.0e-09 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 3.0e+00 arnorm = 2.8e-05 itn = 5 r2norm = 1.0e+03 acond = 5.2e+00 xnorm = 1.9e+02 RUsage is: 153304 Finding optimal step size... Finished opt2. Tderiv 0.022404 wall, 0.020000 cpu Topt 0.241796 wall, 0.230000 cpu Tstep 0.329192 wall, 0.320000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.028e+03 1.028e+03 1.0e+00 1.4e-04 1 -1.06500e+01 1.023e+03 1.023e+03 1.0e+00 9.0e-03 1.4e+00 1.0e+00 2 -1.09087e+01 1.023e+03 1.023e+03 1.0e+00 2.9e-03 1.9e+00 2.0e+00 3 -1.07478e+01 1.023e+03 1.023e+03 1.0e+00 6.0e-05 2.3e+00 3.2e+00 4 -1.07468e+01 1.023e+03 1.023e+03 1.0e+00 2.8e-06 2.7e+00 4.2e+00 5 -1.07471e+01 1.023e+03 1.023e+03 1.0e+00 1.5e-09 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 3.0e+00 arnorm = 4.7e-06 itn = 5 r2norm = 1.0e+03 acond = 5.2e+00 xnorm = 7.3e+01 RUsage is: 161528 Finding optimal step size... Finished opt2. Tderiv 0.022375 wall, 0.030000 cpu Topt 0.242492 wall, 0.240000 cpu Tstep 0.370250 wall, 0.370000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.023e+03 1.023e+03 1.0e+00 1.8e-05 1 -1.17952e+00 1.023e+03 1.023e+03 1.0e+00 1.1e-03 1.4e+00 1.0e+00 2 -1.20145e+00 1.023e+03 1.023e+03 1.0e+00 3.4e-04 1.9e+00 2.0e+00 3 -1.18759e+00 1.023e+03 1.023e+03 1.0e+00 3.1e-06 2.3e+00 3.2e+00 4 -1.18746e+00 1.023e+03 1.023e+03 1.0e+00 2.6e-07 2.7e+00 4.2e+00 5 -1.18747e+00 1.023e+03 1.023e+03 1.0e+00 6.9e-10 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 3.0e+00 arnorm = 2.1e-06 itn = 5 r2norm = 1.0e+03 acond = 5.2e+00 xnorm = 9.5e+00 RUsage is: 165864 Finding optimal step size... Finished opt2. Tderiv 0.022646 wall, 0.030000 cpu Topt 0.242732 wall, 0.230000 cpu Tstep 0.372154 wall, 0.380000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.023e+03 1.023e+03 1.0e+00 4.0e-06 1 -2.66033e-01 1.023e+03 1.023e+03 1.0e+00 2.4e-04 1.4e+00 1.0e+00 2 -2.70986e-01 1.023e+03 1.023e+03 1.0e+00 7.7e-05 1.9e+00 2.0e+00 3 -2.67857e-01 1.023e+03 1.023e+03 1.0e+00 7.1e-07 2.3e+00 3.2e+00 4 -2.67827e-01 1.023e+03 1.023e+03 1.0e+00 5.9e-08 2.7e+00 4.2e+00 5 -2.67830e-01 1.023e+03 1.023e+03 1.0e+00 1.6e-10 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 3.0e+00 arnorm = 4.8e-07 itn = 5 r2norm = 1.0e+03 acond = 5.2e+00 xnorm = 2.1e+00 RUsage is: 165864 Finding optimal step size... Finished opt2. Tderiv 0.022437 wall, 0.020000 cpu Topt 0.240405 wall, 0.240000 cpu Tstep 0.373551 wall, 0.370000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.023e+03 1.023e+03 1.0e+00 9.4e-07 1 -6.19435e-02 1.023e+03 1.023e+03 1.0e+00 5.6e-05 1.4e+00 1.0e+00 2 -6.30971e-02 1.023e+03 1.023e+03 1.0e+00 1.8e-05 1.9e+00 2.0e+00 3 -6.23685e-02 1.023e+03 1.023e+03 1.0e+00 1.7e-07 2.3e+00 3.2e+00 4 -6.23615e-02 1.023e+03 1.023e+03 1.0e+00 1.4e-08 2.7e+00 4.2e+00 5 -6.23622e-02 1.023e+03 1.023e+03 1.0e+00 3.6e-11 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 3.0e+00 arnorm = 1.1e-07 itn = 5 r2norm = 1.0e+03 acond = 5.2e+00 xnorm = 5.0e-01 RUsage is: 165864 Finding optimal step size... Finished opt2. Tderiv 0.022516 wall, 0.020000 cpu Topt 0.239785 wall, 0.230000 cpu Tstep 0.437215 wall, 0.440000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.023e+03 1.023e+03 1.0e+00 2.2e-07 1 -1.45200e-02 1.023e+03 1.023e+03 1.0e+00 1.3e-05 1.4e+00 1.0e+00 2 -1.47905e-02 1.023e+03 1.023e+03 1.0e+00 4.2e-06 1.9e+00 2.0e+00 3 -1.46197e-02 1.023e+03 1.023e+03 1.0e+00 3.9e-08 2.3e+00 3.2e+00 4 -1.46181e-02 1.023e+03 1.023e+03 1.0e+00 3.2e-09 2.7e+00 4.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 2.7e+00 arnorm = 8.9e-06 itn = 4 r2norm = 1.0e+03 acond = 4.2e+00 xnorm = 1.2e-01 RUsage is: 165864 Finding optimal step size... Finished opt2. Tderiv 0.022538 wall, 0.020000 cpu Topt 0.225141 wall, 0.230000 cpu Tstep 0.427205 wall, 0.430000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.023e+03 1.023e+03 1.0e+00 5.2e-08 1 -3.40961e-03 1.023e+03 1.023e+03 1.0e+00 3.1e-06 1.4e+00 1.0e+00 2 -3.47312e-03 1.023e+03 1.023e+03 1.0e+00 9.9e-07 1.9e+00 2.0e+00 3 -3.43302e-03 1.023e+03 1.023e+03 1.0e+00 9.1e-09 2.3e+00 3.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 2.3e+00 arnorm = 2.2e-05 itn = 3 r2norm = 1.0e+03 acond = 3.2e+00 xnorm = 2.7e-02 RUsage is: 165864 Finding optimal step size... Finished opt2. Tderiv 0.022509 wall, 0.020000 cpu Topt 0.205383 wall, 0.200000 cpu Tstep 0.425529 wall, 0.420000 cpu STEP 1 Source 0 has initial probability: -1916347.76412 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.58627, 17.67081) with Mags: r=2.70978 brightness is Mags: r=2.70978 brightness is Mags: r=0.709781 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.58627, 17.67081) with Mags: r=0.709781 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source0.shape.re', 'catalog.source0.shape.ab', 'catalog.source0.shape.phi', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.093e+03 1.093e+03 1.0e+00 9.2e-05 1 -6.97215e+00 1.091e+03 1.091e+03 1.0e+00 2.2e-02 1.6e+00 1.0e+00 2 7.69809e+01 1.090e+03 1.090e+03 1.0e+00 1.8e-02 1.8e+00 3.1e+00 3 1.44609e+02 1.088e+03 1.088e+03 1.0e+00 6.0e-03 2.0e+00 5.4e+00 4 1.68026e+02 1.088e+03 1.088e+03 9.9e-01 7.0e-03 2.0e+00 8.1e+00 5 1.76733e+02 1.088e+03 1.088e+03 9.9e-01 8.7e-04 2.2e+00 1.0e+01 6 1.76783e+02 1.088e+03 1.088e+03 9.9e-01 2.0e-05 2.6e+00 1.2e+01 7 1.76783e+02 1.088e+03 1.088e+03 9.9e-01 9.0e-08 3.1e+00 1.4e+01 8 1.76783e+02 1.088e+03 1.088e+03 9.9e-01 1.6e-08 3.3e+00 1.6e+01 9 1.76783e+02 1.088e+03 1.088e+03 9.9e-01 3.4e-09 3.5e+00 1.7e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 3.5e+00 arnorm = 1.3e-05 itn = 9 r2norm = 1.1e+03 acond = 1.7e+01 xnorm = 2.9e+02 RUsage is: 316428 Finding optimal step size... Finished opt2. Tderiv 0.105955 wall, 0.100000 cpu Topt 0.413450 wall, 0.410000 cpu Tstep 0.373678 wall, 0.370000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.58627, 17.67081) with Mags: r=2.10153 and Galaxy Shape: re=4.39, ab=0.96, phi=28.8 Source 0 has final probability: -1915160.91673 Probability difference is: 1186.84739048 Source 1 has initial probability: -1915160.91673 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.54012, 17.67728) with Mags: r=3.09798 brightness is Mags: r=3.09798 brightness is Mags: r=1.09798 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.54012, 17.67728) with Mags: r=1.09798 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source1.shape.re', 'catalog.source1.shape.ab', 'catalog.source1.shape.phi', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.316e+03 1.316e+03 1.0e+00 4.5e-05 1 -4.93987e+01 1.314e+03 1.314e+03 1.0e+00 2.7e-02 1.1e+00 1.0e+00 2 -7.74679e+01 1.313e+03 1.313e+03 1.0e+00 1.7e-02 1.5e+00 2.5e+00 3 -9.70493e+01 1.313e+03 1.313e+03 1.0e+00 1.1e-02 1.9e+00 4.2e+00 4 -1.13494e+02 1.312e+03 1.312e+03 1.0e+00 2.2e-03 2.4e+00 6.0e+00 5 -1.10829e+02 1.312e+03 1.312e+03 1.0e+00 2.7e-03 2.4e+00 8.1e+00 6 -1.05754e+02 1.312e+03 1.312e+03 1.0e+00 2.3e-04 2.6e+00 1.1e+01 7 -1.05911e+02 1.312e+03 1.312e+03 1.0e+00 1.7e-04 2.8e+00 1.2e+01 8 -1.06485e+02 1.312e+03 1.312e+03 1.0e+00 2.5e-05 3.0e+00 1.4e+01 9 -1.06488e+02 1.312e+03 1.312e+03 1.0e+00 4.3e-08 3.4e+00 1.6e+01 10 -1.06488e+02 1.312e+03 1.312e+03 1.0e+00 6.2e-09 3.6e+00 1.8e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.3e+03 anorm = 3.6e+00 arnorm = 2.9e-05 itn = 10 r2norm = 1.3e+03 acond = 1.8e+01 xnorm = 1.9e+02 RUsage is: 335908 Finding optimal step size... Finished opt2. Tderiv 0.137049 wall, 0.140000 cpu Topt 0.480248 wall, 0.480000 cpu Tstep 0.675788 wall, 0.670000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.54012, 17.67728) with Mags: r=1.53512 and Galaxy Shape: re=98.14, ab=0.03, phi=143.8 Source 1 has final probability: -1913296.60395 Probability difference is: 1864.31277661 Source 2 has initial probability: -1913296.60395 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.46816, 17.66947) with Mags: r=3.47868 brightness is Mags: r=3.47868 brightness is Mags: r=1.47868 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.46816, 17.66947) with Mags: r=1.47868 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source2.shape.re', 'catalog.source2.shape.ab', 'catalog.source2.shape.phi', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.200e+03 1.200e+03 1.0e+00 3.6e-05 1 1.68971e+01 1.200e+03 1.200e+03 1.0e+00 1.2e-02 1.2e+00 1.0e+00 2 5.02617e+00 1.199e+03 1.199e+03 1.0e+00 5.8e-03 1.5e+00 2.3e+00 3 -9.70262e-01 1.199e+03 1.199e+03 1.0e+00 4.9e-03 1.9e+00 3.6e+00 4 -1.00042e+01 1.199e+03 1.199e+03 1.0e+00 1.2e-03 2.4e+00 6.2e+00 5 -1.00760e+01 1.199e+03 1.199e+03 1.0e+00 1.1e-03 2.5e+00 7.7e+00 6 -7.69443e+00 1.199e+03 1.199e+03 1.0e+00 1.2e-03 2.6e+00 1.1e+01 7 -6.80418e+00 1.199e+03 1.199e+03 1.0e+00 3.5e-04 2.9e+00 1.3e+01 8 -6.80109e+00 1.199e+03 1.199e+03 1.0e+00 8.6e-05 3.1e+00 1.4e+01 9 -7.00775e+00 1.199e+03 1.199e+03 1.0e+00 6.8e-05 3.2e+00 1.5e+01 10 -7.21236e+00 1.199e+03 1.199e+03 1.0e+00 3.7e-05 3.3e+00 1.7e+01 11 -7.23629e+00 1.199e+03 1.199e+03 1.0e+00 4.2e-08 3.7e+00 1.9e+01 12 -7.23629e+00 1.199e+03 1.199e+03 1.0e+00 3.9e-10 3.9e+00 2.1e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.2e+03 anorm = 3.9e+00 arnorm = 1.8e-06 itn = 12 r2norm = 1.2e+03 acond = 2.1e+01 xnorm = 8.1e+01 RUsage is: 396392 Finding optimal step size... Finished opt2. Tderiv 0.132417 wall, 0.130000 cpu Topt 0.561391 wall, 0.560000 cpu Tstep 0.590855 wall, 0.590000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.46816, 17.66947) with Mags: r=7.96377 and Galaxy Shape: re=0.03, ab=0.63, phi=-72.5 Source 2 has final probability: -1912792.63884 Probability difference is: 503.965109173 Source 3 has initial probability: -1912792.63884 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.51582, 17.78528) with Mags: r=3.13701 brightness is Mags: r=3.13701 brightness is Mags: r=1.13701 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.51582, 17.78528) with Mags: r=1.13701 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source3.shape.re', 'catalog.source3.shape.ab', 'catalog.source3.shape.phi', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.216e+03 1.216e+03 1.0e+00 4.2e-05 1 1.15175e+01 1.215e+03 1.215e+03 1.0e+00 2.2e-02 1.2e+00 1.0e+00 2 1.10194e+01 1.215e+03 1.215e+03 1.0e+00 7.5e-03 1.8e+00 2.3e+00 3 -4.45759e-01 1.215e+03 1.215e+03 1.0e+00 5.5e-03 2.1e+00 3.8e+00 4 -3.61684e+00 1.215e+03 1.215e+03 1.0e+00 1.8e-03 2.4e+00 6.3e+00 5 -3.66329e+00 1.215e+03 1.215e+03 1.0e+00 1.5e-03 2.5e+00 7.6e+00 6 -2.69590e+00 1.215e+03 1.215e+03 1.0e+00 1.6e-03 2.7e+00 9.7e+00 7 -1.36365e+00 1.215e+03 1.215e+03 1.0e+00 2.3e-04 3.0e+00 1.2e+01 8 -1.39916e+00 1.215e+03 1.215e+03 1.0e+00 5.1e-05 3.1e+00 1.3e+01 9 -1.45172e+00 1.215e+03 1.215e+03 1.0e+00 1.4e-05 3.3e+00 1.4e+01 10 -1.52513e+00 1.215e+03 1.215e+03 1.0e+00 1.4e-05 3.4e+00 1.6e+01 19 -1.57533e+00 1.215e+03 1.215e+03 1.0e+00 1.9e-08 5.1e+00 3.5e+04 20 -1.57533e+00 1.215e+03 1.215e+03 1.0e+00 1.1e-09 5.2e+00 3.5e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.2e+03 anorm = 5.2e+00 arnorm = 7.1e-06 itn = 20 r2norm = 1.2e+03 acond = 3.5e+04 xnorm = 3.1e+04 RUsage is: 480244 Finding optimal step size... /home/kilian/tractor/tractor/engine.py:386: RuntimeWarning: overflow encountered in add img[outy, outx] += p * scale Finished opt2. Tderiv 0.162745 wall, 0.160000 cpu Topt 0.786333 wall, 0.780000 cpu Tstep 0.097883 wall, 0.110000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.51582, 17.78528) with Mags: r=1.13701 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 3 has final probability: -1913440.7463 Probability difference is: -648.107460469 Source 4 has initial probability: -1922406.06782 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.45069, 17.78498) with Mags: r=3.2154 brightness is Mags: r=3.2154 brightness is Mags: r=1.2154 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.45069, 17.78498) with Mags: r=1.2154 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source4.shape.re', 'catalog.source4.shape.ab', 'catalog.source4.shape.phi', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.153e+03 1.153e+03 1.0e+00 1.5e-04 1 9.25096e+00 1.144e+03 1.144e+03 9.9e-01 1.9e-02 1.4e+00 1.0e+00 2 8.07229e+00 1.143e+03 1.143e+03 9.9e-01 1.4e-02 1.6e+00 2.5e+00 3 -8.19925e+00 1.142e+03 1.142e+03 9.9e-01 8.9e-03 1.8e+00 4.3e+00 4 -3.64213e+00 1.142e+03 1.142e+03 9.9e-01 3.4e-03 2.2e+00 5.9e+00 5 -2.16839e+00 1.142e+03 1.142e+03 9.9e-01 3.1e-03 2.5e+00 7.3e+00 6 -2.70900e+00 1.142e+03 1.142e+03 9.9e-01 2.1e-03 2.8e+00 1.0e+01 7 -1.39833e+00 1.142e+03 1.142e+03 9.9e-01 2.4e-04 3.0e+00 1.2e+01 8 -1.44148e+00 1.142e+03 1.142e+03 9.9e-01 4.9e-05 3.1e+00 1.3e+01 9 -1.48275e+00 1.142e+03 1.142e+03 9.9e-01 9.5e-06 3.3e+00 1.4e+01 10 -1.57127e+00 1.142e+03 1.142e+03 9.9e-01 5.4e-06 3.3e+00 1.6e+01 17 -1.57533e+00 1.142e+03 1.142e+03 9.9e-01 3.6e-09 4.7e+00 3.2e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 4.7e+00 arnorm = 1.9e-05 itn = 17 r2norm = 1.1e+03 acond = 3.2e+04 xnorm = 3.1e+04 RUsage is: 488708 Finding optimal step size... Finished opt2. Tderiv 0.142147 wall, 0.150000 cpu Topt 0.676270 wall, 0.670000 cpu Tstep 0.093429 wall, 0.100000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.45069, 17.78498) with Mags: r=1.2154 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 4 has final probability: -1922955.58179 Probability difference is: -549.513969275 Source 5 has initial probability: -1930727.03077 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.42721, 17.78198) with Mags: r=3.58027 brightness is Mags: r=3.58027 brightness is Mags: r=1.58027 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.42721, 17.78198) with Mags: r=1.58027 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source5.shape.re', 'catalog.source5.shape.ab', 'catalog.source5.shape.phi', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.140e+03 1.140e+03 1.0e+00 2.1e-04 1 9.02173e+00 1.123e+03 1.123e+03 9.9e-01 1.2e-02 1.4e+00 1.0e+00 2 8.35775e+00 1.123e+03 1.123e+03 9.9e-01 8.2e-03 1.6e+00 2.3e+00 3 -1.55196e+00 1.123e+03 1.123e+03 9.9e-01 8.5e-03 1.9e+00 4.0e+00 4 -8.55168e+00 1.123e+03 1.123e+03 9.9e-01 3.9e-03 2.4e+00 6.6e+00 5 -5.64416e+00 1.123e+03 1.123e+03 9.9e-01 9.6e-04 2.8e+00 8.3e+00 6 -2.42842e+00 1.123e+03 1.123e+03 9.9e-01 9.7e-04 2.8e+00 1.0e+01 7 8.37811e-02 1.123e+03 1.123e+03 9.9e-01 4.5e-04 3.0e+00 1.2e+01 8 -1.02443e-01 1.123e+03 1.123e+03 9.9e-01 2.3e-04 3.1e+00 1.4e+01 9 -1.44864e+00 1.123e+03 1.123e+03 9.9e-01 9.1e-05 3.2e+00 1.6e+01 10 -1.56482e+00 1.123e+03 1.123e+03 9.9e-01 3.5e-05 3.3e+00 1.7e+01 18 -1.57533e+00 1.123e+03 1.123e+03 9.9e-01 3.8e-10 5.0e+00 3.4e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 5.0e+00 arnorm = 2.1e-06 itn = 18 r2norm = 1.1e+03 acond = 3.4e+04 xnorm = 3.1e+04 RUsage is: 488708 Finding optimal step size... Finished opt2. Tderiv 0.109964 wall, 0.110000 cpu Topt 0.658852 wall, 0.660000 cpu Tstep 0.082216 wall, 0.080000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.42721, 17.78198) with Mags: r=1.58027 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 5 has final probability: -1930951.73907 Probability difference is: -224.708298649 Source 6 has initial probability: -1934975.91398 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.57226, 17.79959) with Mags: r=3.29176 brightness is Mags: r=3.29176 brightness is Mags: r=1.29176 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.57226, 17.79959) with Mags: r=1.29176 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source6.shape.re', 'catalog.source6.shape.ab', 'catalog.source6.shape.phi', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.137e+03 1.137e+03 1.0e+00 2.3e-04 1 9.04240e+00 1.117e+03 1.117e+03 9.8e-01 1.6e-02 1.4e+00 1.0e+00 2 8.20749e+00 1.116e+03 1.116e+03 9.8e-01 1.3e-02 1.6e+00 2.5e+00 3 -4.12571e+00 1.116e+03 1.116e+03 9.8e-01 1.1e-02 1.9e+00 4.2e+00 4 -7.36721e+00 1.115e+03 1.115e+03 9.8e-01 4.4e-03 2.4e+00 6.4e+00 5 -3.19221e+00 1.115e+03 1.115e+03 9.8e-01 2.5e-03 2.7e+00 7.9e+00 6 -3.43971e+00 1.115e+03 1.115e+03 9.8e-01 2.3e-03 2.8e+00 1.0e+01 7 -8.80740e-01 1.115e+03 1.115e+03 9.8e-01 3.3e-04 3.0e+00 1.3e+01 8 -1.03229e+00 1.115e+03 1.115e+03 9.8e-01 7.5e-05 3.1e+00 1.4e+01 9 -1.34338e+00 1.115e+03 1.115e+03 9.8e-01 4.1e-05 3.2e+00 1.5e+01 10 -1.57240e+00 1.115e+03 1.115e+03 9.8e-01 9.5e-06 3.3e+00 1.7e+01 18 -1.57533e+00 1.115e+03 1.115e+03 9.8e-01 2.6e-10 5.0e+00 3.4e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 5.0e+00 arnorm = 1.5e-06 itn = 18 r2norm = 1.1e+03 acond = 3.4e+04 xnorm = 3.1e+04 RUsage is: 499348 Finding optimal step size... Finished opt2. Tderiv 0.125017 wall, 0.130000 cpu Topt 0.682984 wall, 0.680000 cpu Tstep 0.086348 wall, 0.080000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.57226, 17.79959) with Mags: r=1.29176 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 6 has final probability: -1935381.68974 Probability difference is: -405.775762171 Source 7 has initial probability: -1942204.65664 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.55781, 17.78946) with Mags: r=2.84323 brightness is Mags: r=2.84323 brightness is Mags: r=0.843228 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.55781, 17.78946) with Mags: r=0.843228 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source7.shape.re', 'catalog.source7.shape.ab', 'catalog.source7.shape.phi', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.177e+03 1.177e+03 1.0e+00 2.5e-04 1 8.98982e+00 1.150e+03 1.150e+03 9.8e-01 2.2e-02 1.4e+00 1.0e+00 2 8.71988e+00 1.150e+03 1.150e+03 9.8e-01 1.9e-02 1.7e+00 2.2e+00 3 2.97688e+00 1.149e+03 1.149e+03 9.8e-01 9.6e-03 2.2e+00 4.4e+00 4 -7.19163e+00 1.149e+03 1.149e+03 9.8e-01 4.1e-03 2.4e+00 6.4e+00 5 -1.79130e+00 1.148e+03 1.148e+03 9.8e-01 2.9e-03 2.6e+00 7.7e+00 6 -2.63723e+00 1.148e+03 1.148e+03 9.8e-01 2.4e-03 2.8e+00 1.1e+01 7 -1.24070e+00 1.148e+03 1.148e+03 9.8e-01 2.8e-04 3.0e+00 1.3e+01 8 -1.32109e+00 1.148e+03 1.148e+03 9.8e-01 6.8e-05 3.1e+00 1.4e+01 9 -1.38899e+00 1.148e+03 1.148e+03 9.8e-01 3.3e-05 3.3e+00 1.5e+01 10 -1.44596e+00 1.148e+03 1.148e+03 9.8e-01 1.6e-05 3.5e+00 1.6e+01 19 -1.57533e+00 1.148e+03 1.148e+03 9.8e-01 1.1e-09 5.1e+00 3.5e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 5.1e+00 arnorm = 6.3e-06 itn = 19 r2norm = 1.1e+03 acond = 3.5e+04 xnorm = 3.1e+04 RUsage is: 523012 Finding optimal step size... Finished opt2. Tderiv 0.153167 wall, 0.150000 cpu Topt 0.743580 wall, 0.740000 cpu Tstep 0.093471 wall, 0.100000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.55781, 17.78946) with Mags: r=0.843228 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 7 has final probability: -1942881.88703 Probability difference is: -677.230382165 Source 8 has initial probability: -1958720.77173 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.52463, 17.78049) with Mags: r=3.16546 brightness is Mags: r=3.16546 brightness is Mags: r=1.16546 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.52463, 17.78049) with Mags: r=1.16546 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source8.shape.re', 'catalog.source8.shape.ab', 'catalog.source8.shape.phi', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.309e+03 1.309e+03 1.0e+00 2.5e-04 1 8.98621e+00 1.272e+03 1.272e+03 9.7e-01 1.5e-02 1.4e+00 1.0e+00 2 8.11322e+00 1.272e+03 1.272e+03 9.7e-01 1.4e-02 1.6e+00 2.6e+00 3 -9.62782e+00 1.271e+03 1.271e+03 9.7e-01 1.4e-02 1.9e+00 4.8e+00 4 -1.42310e+01 1.271e+03 1.271e+03 9.7e-01 5.2e-03 2.3e+00 7.4e+00 5 -8.46226e+00 1.271e+03 1.271e+03 9.7e-01 1.5e-03 2.7e+00 9.0e+00 6 -4.76341e+00 1.271e+03 1.271e+03 9.7e-01 1.1e-03 2.8e+00 1.0e+01 7 -1.87308e+00 1.271e+03 1.271e+03 9.7e-01 4.6e-04 3.0e+00 1.2e+01 8 -1.50581e+00 1.271e+03 1.271e+03 9.7e-01 9.7e-05 3.3e+00 1.3e+01 9 -1.51296e+00 1.271e+03 1.271e+03 9.7e-01 1.9e-05 3.4e+00 1.5e+01 10 -1.52947e+00 1.271e+03 1.271e+03 9.7e-01 5.4e-06 3.6e+00 1.6e+01 19 -1.57533e+00 1.271e+03 1.271e+03 9.7e-01 1.6e-08 5.1e+00 3.5e+04 20 -1.57533e+00 1.271e+03 1.271e+03 9.7e-01 1.9e-09 5.2e+00 3.5e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.3e+03 anorm = 5.2e+00 arnorm = 1.3e-05 itn = 20 r2norm = 1.3e+03 acond = 3.5e+04 xnorm = 3.1e+04 RUsage is: 538216 Finding optimal step size... Finished opt2. Tderiv 0.170606 wall, 0.160000 cpu Topt 0.798062 wall, 0.800000 cpu Tstep 0.099669 wall, 0.100000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.52463, 17.78049) with Mags: r=1.16546 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 8 has final probability: -1959134.66607 Probability difference is: -413.894339299 Source 9 has initial probability: -1967843.37939 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.51808, 17.74175) with Mags: r=2.6654 brightness is Mags: r=2.6654 brightness is Mags: r=0.665402 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.51808, 17.74175) with Mags: r=0.665402 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source9.shape.re', 'catalog.source9.shape.ab', 'catalog.source9.shape.phi', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.770e+03 1.770e+03 1.0e+00 3.0e-04 1 1.01084e+01 1.626e+03 1.626e+03 9.2e-01 2.4e-01 1.3e+00 1.0e+00 2 1.38757e+01 1.511e+03 1.511e+03 8.5e-01 1.9e-01 1.7e+00 2.7e+00 3 -1.70892e+00 1.421e+03 1.421e+03 8.0e-01 1.0e-01 2.2e+00 4.7e+00 4 -7.14391e+00 1.381e+03 1.381e+03 7.8e-01 3.3e-02 2.5e+00 6.4e+00 5 1.33122e+00 1.374e+03 1.374e+03 7.8e-01 3.8e-02 2.6e+00 7.6e+00 6 5.27357e+00 1.360e+03 1.360e+03 7.7e-01 1.7e-02 2.9e+00 1.1e+01 7 -7.84741e+00 1.358e+03 1.358e+03 7.7e-01 4.8e-03 3.1e+00 1.2e+01 8 -1.42475e+00 1.358e+03 1.358e+03 7.7e-01 2.5e-04 3.3e+00 1.4e+01 9 -1.43799e+00 1.358e+03 1.358e+03 7.7e-01 4.7e-05 3.6e+00 1.5e+01 10 -1.50040e+00 1.358e+03 1.358e+03 7.7e-01 1.6e-05 3.7e+00 1.6e+01 19 -1.57533e+00 1.358e+03 1.358e+03 7.7e-01 7.2e-08 5.1e+00 3.5e+04 20 -1.57533e+00 1.358e+03 1.358e+03 7.7e-01 4.4e-10 5.3e+00 3.6e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.4e+03 anorm = 5.3e+00 arnorm = 3.2e-06 itn = 20 r2norm = 1.4e+03 acond = 3.6e+04 xnorm = 3.1e+04 RUsage is: 569880 Finding optimal step size... Finished opt2. Tderiv 0.207364 wall, 0.210000 cpu Topt 0.989931 wall, 0.990000 cpu Tstep 0.114437 wall, 0.110000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.51808, 17.74175) with Mags: r=0.665402 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 9 has final probability: -1957189.71812 Probability difference is: 10653.6612788 FINISHED SWITCHING TO GALAXIES Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 97 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 194 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.777e+03 1.777e+03 1.0e+00 2.9e-04 1 1.00916e+01 1.633e+03 1.633e+03 9.2e-01 2.4e-01 1.3e+00 1.0e+00 2 -8.62832e+00 1.519e+03 1.519e+03 8.5e-01 1.9e-01 1.7e+00 2.7e+00 3 1.15352e+01 1.430e+03 1.430e+03 8.0e-01 1.1e-01 2.2e+00 4.7e+00 4 -2.48339e+01 1.392e+03 1.392e+03 7.8e-01 5.3e-02 2.5e+00 6.4e+00 5 3.53909e+00 1.386e+03 1.386e+03 7.8e-01 2.6e-02 2.9e+00 7.9e+00 6 -7.54721e+00 1.375e+03 1.375e+03 7.7e-01 3.7e-02 3.1e+00 1.1e+01 7 -2.09904e+00 1.368e+03 1.368e+03 7.7e-01 1.1e-02 3.4e+00 1.3e+01 8 -2.05165e+00 1.367e+03 1.367e+03 7.7e-01 1.3e-03 3.6e+00 1.5e+01 9 -1.96948e+00 1.367e+03 1.367e+03 7.7e-01 3.1e-04 3.8e+00 1.6e+01 10 -1.90693e+00 1.367e+03 1.367e+03 7.7e-01 1.3e-04 4.1e+00 1.7e+01 20 -1.37004e+00 1.367e+03 1.367e+03 7.7e-01 5.8e-08 5.3e+00 3.5e+01 21 -1.36963e+00 1.367e+03 1.367e+03 7.7e-01 9.5e-08 5.3e+00 3.8e+01 22 -1.36944e+00 1.367e+03 1.367e+03 7.7e-01 2.7e-08 5.5e+00 4.0e+01 23 -1.36941e+00 1.367e+03 1.367e+03 7.7e-01 2.5e-08 5.5e+00 4.3e+01 24 -1.36937e+00 1.367e+03 1.367e+03 7.7e-01 2.2e-08 5.7e+00 4.5e+01 25 -1.36939e+00 1.367e+03 1.367e+03 7.7e-01 7.7e-08 5.8e+00 5.9e+01 33 -1.36943e+00 1.367e+03 1.367e+03 7.7e-01 1.2e-08 7.0e+00 2.2e+05 34 -1.36943e+00 1.367e+03 1.367e+03 7.7e-01 1.6e-10 7.2e+00 2.2e+05 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.4e+03 anorm = 7.2e+00 arnorm = 1.5e-06 itn = 34 r2norm = 1.4e+03 acond = 2.2e+05 xnorm = 9.6e+04 RUsage is: 629436 Finding optimal step size... Finished opt2. Tderiv 0.258581 wall, 0.270000 cpu Topt 1.446230 wall, 1.440000 cpu Tstep 0.146649 wall, 0.140000 cpu STEP 2: Tractor: Finding derivs... Finding optimal update direction... Starting psf optimisation {'images': 0, 'catalog': 1} Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.75, 0.25, 0.0, 0.0, 0.0, 0.0, 4.5269352648257124, 4.5269352648257124, 0.0, 18.10774105930285, 18.10774105930285, 0.0] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.669e+03 1.669e+03 1.0e+00 2.5e-04 1 -8.77299e+01 1.630e+03 1.630e+03 9.8e-01 1.9e-02 2.0e+00 1.0e+00 2 -8.45584e+01 1.629e+03 1.629e+03 9.8e-01 7.2e-03 2.3e+00 2.4e+00 3 -8.25282e+01 1.629e+03 1.629e+03 9.8e-01 6.1e-04 2.5e+00 3.9e+00 4 -7.98223e+01 1.629e+03 1.629e+03 9.8e-01 6.5e-04 2.6e+00 6.1e+00 5 -7.63077e+01 1.629e+03 1.629e+03 9.8e-01 6.1e-04 2.7e+00 8.7e+00 6 -7.06792e+01 1.629e+03 1.629e+03 9.8e-01 7.5e-04 2.9e+00 1.2e+01 7 -5.66671e+01 1.629e+03 1.629e+03 9.8e-01 1.5e-04 3.1e+00 1.9e+01 8 -5.63307e+01 1.629e+03 1.629e+03 9.8e-01 9.4e-05 3.2e+00 2.0e+01 9 -5.62420e+01 1.629e+03 1.629e+03 9.8e-01 1.1e-05 3.4e+00 2.2e+01 10 -5.62382e+01 1.629e+03 1.629e+03 9.8e-01 2.1e-07 3.4e+00 2.3e+01 11 -5.62388e+01 1.629e+03 1.629e+03 9.8e-01 7.8e-08 3.5e+00 2.4e+01 12 -5.62389e+01 1.629e+03 1.629e+03 9.8e-01 6.1e-08 3.8e+00 2.6e+01 13 -1.76264e+05 1.629e+03 1.629e+03 9.8e-01 2.6e-07 4.0e+00 1.2e+05 14 -1.76264e+05 1.629e+03 1.629e+03 9.8e-01 5.9e-09 4.2e+00 1.3e+05 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.6e+03 anorm = 4.2e+00 arnorm = 4.0e-05 itn = 14 r2norm = 1.6e+03 acond = 1.3e+05 xnorm = 2.5e+05 RUsage is: 1032132 Finding optimal step size... Finished opt2. Tderiv 1.398749 wall, 1.390000 cpu Topt 1.236789 wall, 1.230000 cpu Tstep 0.260111 wall, 0.260000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.74831281909417624, 0.2516871809058237, 0.00018560881286038629, -0.00013168055070763047, 0.0012100573714693161, -0.00074692221995952338, 4.5279082461789848, 4.5279118057360668, -8.2349414921344035e-05, 18.161990456242567, 18.165773318334598, 0.00072774088631442099] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.668e+03 1.668e+03 1.0e+00 2.5e-04 1 -8.75370e+01 1.630e+03 1.630e+03 9.8e-01 1.9e-02 2.0e+00 1.0e+00 2 -8.43843e+01 1.629e+03 1.629e+03 9.8e-01 7.1e-03 2.3e+00 2.4e+00 3 -8.23741e+01 1.629e+03 1.629e+03 9.8e-01 6.1e-04 2.5e+00 3.9e+00 4 -7.97166e+01 1.629e+03 1.629e+03 9.8e-01 6.4e-04 2.6e+00 6.1e+00 5 -7.63326e+01 1.629e+03 1.629e+03 9.8e-01 6.0e-04 2.7e+00 8.7e+00 6 -7.07848e+01 1.629e+03 1.629e+03 9.8e-01 7.4e-04 2.9e+00 1.2e+01 7 -5.69879e+01 1.629e+03 1.629e+03 9.8e-01 1.5e-04 3.1e+00 1.9e+01 8 -5.66618e+01 1.629e+03 1.629e+03 9.8e-01 9.3e-05 3.2e+00 2.0e+01 9 -5.65727e+01 1.629e+03 1.629e+03 9.8e-01 1.1e-05 3.4e+00 2.2e+01 10 -5.65684e+01 1.629e+03 1.629e+03 9.8e-01 2.1e-07 3.4e+00 2.3e+01 11 -5.65683e+01 1.629e+03 1.629e+03 9.8e-01 1.0e-07 3.5e+00 2.4e+01 12 -5.65684e+01 1.629e+03 1.629e+03 9.8e-01 4.3e-10 4.0e+00 2.8e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.6e+03 anorm = 4.0e+00 arnorm = 2.8e-06 itn = 12 r2norm = 1.6e+03 acond = 2.8e+01 xnorm = 2.1e+02 RUsage is: 1153196 Finding optimal step size... Finished opt2. Tderiv 1.418664 wall, 1.420000 cpu Topt 1.196405 wall, 1.190000 cpu Tstep 1.480080 wall, 1.470000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.39599271774785855, 0.60400728225214151, 0.19104599514660933, -0.13472198369630198, 1.2268900217138985, -0.76164769231201301, 5.5064830848224702, 5.5216316722504644, -0.083869976599192902, 73.180623819002037, 76.951805999340479, 0.72251529897553912] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.665e+03 1.665e+03 1.0e+00 3.6e-05 1 -1.93358e+01 1.664e+03 1.664e+03 1.0e+00 1.7e-02 1.6e+00 1.0e+00 2 -1.83521e+01 1.664e+03 1.664e+03 1.0e+00 3.2e-03 2.1e+00 2.3e+00 3 -2.29890e+01 1.663e+03 1.663e+03 1.0e+00 1.4e-03 2.3e+00 3.8e+00 4 -3.14435e+01 1.663e+03 1.663e+03 1.0e+00 9.2e-04 2.4e+00 6.2e+00 5 -3.30968e+01 1.663e+03 1.663e+03 1.0e+00 1.3e-04 2.6e+00 7.5e+00 6 -3.31569e+01 1.663e+03 1.663e+03 1.0e+00 3.4e-05 2.7e+00 8.6e+00 7 -3.31631e+01 1.663e+03 1.663e+03 1.0e+00 7.8e-06 2.9e+00 9.7e+00 8 -3.31636e+01 1.663e+03 1.663e+03 1.0e+00 7.8e-07 3.1e+00 1.1e+01 9 -3.31637e+01 1.663e+03 1.663e+03 1.0e+00 1.2e-07 3.2e+00 1.2e+01 10 -3.31638e+01 1.663e+03 1.663e+03 1.0e+00 3.3e-08 3.3e+00 1.3e+01 11 -3.31909e+01 1.663e+03 1.663e+03 1.0e+00 4.0e-07 3.4e+00 5.1e+01 12 -2.93937e+02 1.663e+03 1.663e+03 1.0e+00 8.0e-05 3.5e+00 5.0e+03 13 -2.82136e+05 1.663e+03 1.663e+03 1.0e+00 2.1e-09 3.9e+00 1.9e+05 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.7e+03 anorm = 3.9e+00 arnorm = 1.4e-05 itn = 13 r2norm = 1.7e+03 acond = 1.9e+05 xnorm = 4.0e+05 RUsage is: 1371096 Finding optimal step size... Finished opt2. Tderiv 1.538087 wall, 1.540000 cpu Topt 1.286909 wall, 1.280000 cpu Tstep 0.272546 wall, 0.270000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.39378099923976134, 0.60621900076023871, 0.1914867096491589, -0.13502518443150818, 1.2252668358538223, -0.76040676959759856, 5.5065484896427002, 5.5219928722468143, -0.083889309942035153, 73.140999782033262, 76.905734536812759, 0.72482002538628776] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.665e+03 1.665e+03 1.0e+00 3.5e-05 1 -1.90384e+01 1.664e+03 1.664e+03 1.0e+00 1.7e-02 1.5e+00 1.0e+00 2 -1.79133e+01 1.664e+03 1.664e+03 1.0e+00 3.2e-03 2.1e+00 2.3e+00 3 -2.24502e+01 1.664e+03 1.664e+03 1.0e+00 1.4e-03 2.3e+00 3.8e+00 4 -3.07687e+01 1.664e+03 1.664e+03 1.0e+00 9.1e-04 2.4e+00 6.2e+00 5 -3.24370e+01 1.664e+03 1.664e+03 1.0e+00 1.3e-04 2.6e+00 7.5e+00 6 -3.24977e+01 1.664e+03 1.664e+03 1.0e+00 3.4e-05 2.7e+00 8.6e+00 7 -3.25038e+01 1.664e+03 1.664e+03 1.0e+00 7.8e-06 2.9e+00 9.7e+00 8 -3.25042e+01 1.664e+03 1.664e+03 1.0e+00 7.8e-07 3.1e+00 1.1e+01 9 -3.25042e+01 1.664e+03 1.664e+03 1.0e+00 1.2e-07 3.2e+00 1.2e+01 10 -3.25042e+01 1.664e+03 1.664e+03 1.0e+00 4.5e-09 3.4e+00 1.3e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.7e+03 anorm = 3.4e+00 arnorm = 2.5e-05 itn = 10 r2norm = 1.7e+03 acond = 1.3e+01 xnorm = 7.6e+01 RUsage is: 1502900 Finding optimal step size... Finished opt2. Tderiv 1.522354 wall, 1.520000 cpu Topt 1.258257 wall, 1.250000 cpu Tstep 1.407544 wall, 1.410000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.34034744798364897, 0.65965255201635109, 0.41712669593266882, -0.29059668141378242, 0.40182944247056884, -0.130707899957621, 5.5447908369823651, 5.7073360920952618, -0.096204518563232144, 52.968713982159386, 53.482565435485895, 1.8787657573859138] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.673e+03 1.673e+03 1.0e+00 2.2e-05 1 -9.79587e+00 1.673e+03 1.673e+03 1.0e+00 7.0e-03 1.7e+00 1.0e+00 2 -8.43231e+00 1.673e+03 1.673e+03 1.0e+00 1.5e-03 2.1e+00 2.3e+00 3 -8.61210e+00 1.673e+03 1.673e+03 1.0e+00 1.3e-04 2.3e+00 3.7e+00 4 -8.66528e+00 1.673e+03 1.673e+03 1.0e+00 3.5e-05 2.5e+00 4.8e+00 5 -8.81722e+00 1.673e+03 1.673e+03 1.0e+00 2.9e-05 2.6e+00 6.6e+00 6 -9.02475e+00 1.673e+03 1.673e+03 1.0e+00 1.6e-05 2.7e+00 9.2e+00 7 -9.05966e+00 1.673e+03 1.673e+03 1.0e+00 4.6e-06 2.9e+00 1.1e+01 8 -9.06511e+00 1.673e+03 1.673e+03 1.0e+00 9.1e-07 3.0e+00 1.2e+01 9 -9.06533e+00 1.673e+03 1.673e+03 1.0e+00 2.2e-07 3.2e+00 1.3e+01 10 -9.06542e+00 1.673e+03 1.673e+03 1.0e+00 1.7e-08 3.3e+00 1.4e+01 11 -9.06558e+00 1.673e+03 1.673e+03 1.0e+00 2.0e-08 3.4e+00 1.5e+01 12 -1.12495e+01 1.673e+03 1.673e+03 1.0e+00 4.8e-06 3.5e+00 7.2e+02 13 -8.89464e+04 1.673e+03 1.673e+03 1.0e+00 2.2e-10 3.9e+00 1.6e+05 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.7e+03 anorm = 3.9e+00 arnorm = 1.5e-06 itn = 13 r2norm = 1.7e+03 acond = 1.6e+05 xnorm = 1.3e+05 RUsage is: 1686832 Finding optimal step size... Finished opt2. Tderiv 1.502668 wall, 1.490000 cpu Topt 1.337569 wall, 1.340000 cpu Tstep 0.153913 wall, 0.150000 cpu End of psf optimisation {'images': 0, 'catalog': 1} sources found: [PointSource(RaDecPos[212.58627001650117, 17.670805010685203], Mags[6.0]), PointSource(RaDecPos[212.54012401201084, 17.677280004436525], Mags[6.0]), PointSource(RaDecPos[212.46815999735401, 17.66947000904743], Mags[6.0]), PointSource(RaDecPos[212.51582099859775, 17.785281989539037], Mags[6.0]), PointSource(RaDecPos[212.45068801466374, 17.784976997112764], Mags[6.0]), PointSource(RaDecPos[212.42721400019389, 17.781981010080656], Mags[6.0]), PointSource(RaDecPos[212.5722629890717, 17.799590992832062], Mags[6.0]), PointSource(RaDecPos[212.5578069949521, 17.789461012639183], Mags[6.0]), PointSource(RaDecPos[212.52463401400419, 17.780489003407968], Mags[6.0]), PointSource(RaDecPos[212.51807500356608, 17.741745011210742], Mags[6.0]), PointSource(RaDecPos[212.51586700837166, 17.735043989856514], Mags[6.0]), PointSource(RaDecPos[212.51471198981281, 17.73531298613922], Mags[6.0]), PointSource(RaDecPos[212.4962349898471, 17.696067996973184], Mags[6.0]), PointSource(RaDecPos[212.49314101475912, 17.725029004741245], Mags[6.0]), PointSource(RaDecPos[212.48538999242737, 17.723759003021769], Mags[6.0]), PointSource(RaDecPos[212.48470099549996, 17.760330006145495], Mags[6.0]), PointSource(RaDecPos[212.47450000591533, 17.726773986820934], Mags[6.0]), PointSource(RaDecPos[212.47564598640423, 17.777065000269854], Mags[6.0]), PointSource(RaDecPos[212.43680301036275, 17.685515998510841], Mags[6.0]), PointSource(RaDecPos[212.42973001531314, 17.694037995605193], Mags[6.0]), PointSource(RaDecPos[212.43464400787943, 17.720620996504572], Mags[6.0]), PointSource(RaDecPos[212.42691898952171, 17.708461988404846], Mags[6.0]), PointSource(RaDecPos[212.59497599750242, 17.743238011340846], Mags[6.0]), PointSource(RaDecPos[212.58645900896661, 17.719195995048278], Mags[6.0]), PointSource(RaDecPos[212.57713401568017, 17.718734992303755], Mags[6.0]), PointSource(RaDecPos[212.56955300818728, 17.711691004302544], Mags[6.0]), PointSource(RaDecPos[212.57904400625549, 17.75922000237879], Mags[6.0]), PointSource(RaDecPos[212.56266101012173, 17.722445987390898], Mags[6.0]), PointSource(RaDecPos[212.54820401059993, 17.698802987231648], Mags[6.0]), PointSource(RaDecPos[212.55521599662887, 17.751168990141483], Mags[6.0]), PointSource(RaDecPos[212.53847200407657, 17.717024007182069], Mags[6.0]), PointSource(RaDecPos[212.54250199282387, 17.745463990445494], Mags[6.0]), PointSource(RaDecPos[212.54448500046382, 17.760971004870477], Mags[6.0]), PointSource(RaDecPos[212.53583800620856, 17.748441997213277], Mags[6.0]), PointSource(RaDecPos[212.53221999343231, 17.772908989386686], Mags[6.0]), PointSource(RaDecPos[212.53093099961634, 17.767281995301154], Mags[6.0]), PointSource(RaDecPos[212.5274410040719, 17.753434988597618], Mags[6.0]), PointSource(RaDecPos[212.51508898959537, 17.696581004013861], Mags[6.0]), PointSource(RaDecPos[212.51342699558697, 17.693769005202373], Mags[6.0]), PointSource(RaDecPos[212.52046399305456, 17.732809008556668], Mags[6.0]), PointSource(RaDecPos[212.51825599392259, 17.733864002083305], Mags[6.0]), PointSource(RaDecPos[212.42721400019389, 17.781981010080656], Mags[6.0]), PointSource(RaDecPos[212.42691898952171, 17.708461988404846], Mags[6.0]), PointSource(RaDecPos[212.54624699062146, 17.764526012050251], Mags[6.0]), PointSource(RaDecPos[212.50332198592073, 17.766808009104651], Mags[6.0]), PointSource(RaDecPos[212.53093099961634, 17.767281995301154], Mags[6.0]), PointSource(RaDecPos[212.53221999343231, 17.772908989386686], Mags[6.0]), PointSource(RaDecPos[212.47564598640423, 17.777065000269854], Mags[6.0]), PointSource(RaDecPos[212.52463401400419, 17.780489003407968], Mags[6.0]), PointSource(RaDecPos[212.45068801466374, 17.784976997112764], Mags[6.0]), PointSource(RaDecPos[212.51582099859775, 17.785281989539037], Mags[6.0]), PointSource(RaDecPos[212.5578069949521, 17.789461012639183], Mags[6.0]), PointSource(RaDecPos[212.52393701103111, 17.790154990159586], Mags[6.0]), PointSource(RaDecPos[212.5722629890717, 17.799590992832062], Mags[6.0]), PointSource(RaDecPos[212.46815999735401, 17.66947000904743], Mags[6.0]), PointSource(RaDecPos[212.58627001650117, 17.670805010685203], Mags[6.0]), PointSource(RaDecPos[212.54012401201084, 17.677280004436525], Mags[6.0]), PointSource(RaDecPos[212.43680301036275, 17.685515998510841], Mags[6.0]), PointSource(RaDecPos[212.51342699558697, 17.693769005202373], Mags[6.0]), PointSource(RaDecPos[212.42973001531314, 17.694037995605193], Mags[6.0]), PointSource(RaDecPos[212.4962349898471, 17.696067996973184], Mags[6.0]), PointSource(RaDecPos[212.51508898959537, 17.696581004013861], Mags[6.0]), PointSource(RaDecPos[212.54820401059993, 17.698802987231648], Mags[6.0]), PointSource(RaDecPos[212.56955300818728, 17.711691004302544], Mags[6.0]), PointSource(RaDecPos[212.53847200407657, 17.717024007182069], Mags[6.0]), PointSource(RaDecPos[212.57713401568017, 17.718734992303755], Mags[6.0]), PointSource(RaDecPos[212.58645900896661, 17.719195995048278], Mags[6.0]), PointSource(RaDecPos[212.43464400787943, 17.720620996504572], Mags[6.0]), PointSource(RaDecPos[212.56266101012173, 17.722445987390898], Mags[6.0]), PointSource(RaDecPos[212.48538999242737, 17.723759003021769], Mags[6.0]), PointSource(RaDecPos[212.49314101475912, 17.725029004741245], Mags[6.0]), PointSource(RaDecPos[212.47450000591533, 17.726773986820934], Mags[6.0]), PointSource(RaDecPos[212.52046399305456, 17.732809008556668], Mags[6.0]), PointSource(RaDecPos[212.51825599392259, 17.733864002083305], Mags[6.0]), PointSource(RaDecPos[212.51586700837166, 17.735043989856514], Mags[6.0]), PointSource(RaDecPos[212.51471198981281, 17.73531298613922], Mags[6.0]), PointSource(RaDecPos[212.51807500356608, 17.741745011210742], Mags[6.0]), PointSource(RaDecPos[212.59497599750242, 17.743238011340846], Mags[6.0]), PointSource(RaDecPos[212.54250199282387, 17.745463990445494], Mags[6.0]), PointSource(RaDecPos[212.53583800620856, 17.748441997213277], Mags[6.0]), PointSource(RaDecPos[212.55521599662887, 17.751168990141483], Mags[6.0]), PointSource(RaDecPos[212.5274410040719, 17.753434988597618], Mags[6.0]), PointSource(RaDecPos[212.57904400625549, 17.75922000237879], Mags[6.0]), PointSource(RaDecPos[212.48470099549996, 17.760330006145495], Mags[6.0]), PointSource(RaDecPos[212.54448500046382, 17.760971004870477], Mags[6.0])] STEP 0: And the thawed params for brightness optimisation are: catalog.source0.brightness.r catalog.source1.brightness.r catalog.source2.brightness.r catalog.source3.brightness.r catalog.source4.brightness.r catalog.source5.brightness.r catalog.source6.brightness.r catalog.source7.brightness.r catalog.source8.brightness.r catalog.source9.brightness.r catalog.source10.brightness.r catalog.source11.brightness.r catalog.source12.brightness.r catalog.source13.brightness.r catalog.source14.brightness.r catalog.source15.brightness.r catalog.source16.brightness.r catalog.source17.brightness.r catalog.source18.brightness.r catalog.source19.brightness.r catalog.source20.brightness.r catalog.source21.brightness.r catalog.source22.brightness.r catalog.source23.brightness.r catalog.source24.brightness.r catalog.source25.brightness.r catalog.source26.brightness.r catalog.source27.brightness.r catalog.source28.brightness.r catalog.source29.brightness.r catalog.source30.brightness.r catalog.source31.brightness.r catalog.source32.brightness.r catalog.source33.brightness.r catalog.source34.brightness.r catalog.source35.brightness.r catalog.source36.brightness.r catalog.source37.brightness.r catalog.source38.brightness.r catalog.source39.brightness.r catalog.source40.brightness.r catalog.source41.brightness.r catalog.source42.brightness.r catalog.source43.brightness.r catalog.source44.brightness.r catalog.source45.brightness.r catalog.source46.brightness.r catalog.source47.brightness.r catalog.source48.brightness.r catalog.source49.brightness.r catalog.source50.brightness.r catalog.source51.brightness.r catalog.source52.brightness.r catalog.source53.brightness.r catalog.source54.brightness.r catalog.source55.brightness.r catalog.source56.brightness.r catalog.source57.brightness.r catalog.source58.brightness.r catalog.source59.brightness.r catalog.source60.brightness.r catalog.source61.brightness.r catalog.source62.brightness.r catalog.source63.brightness.r catalog.source64.brightness.r catalog.source65.brightness.r catalog.source66.brightness.r catalog.source67.brightness.r catalog.source68.brightness.r catalog.source69.brightness.r catalog.source70.brightness.r catalog.source71.brightness.r catalog.source72.brightness.r catalog.source73.brightness.r catalog.source74.brightness.r catalog.source75.brightness.r catalog.source76.brightness.r catalog.source77.brightness.r catalog.source78.brightness.r catalog.source79.brightness.r catalog.source80.brightness.r catalog.source81.brightness.r catalog.source82.brightness.r catalog.source83.brightness.r catalog.source84.brightness.r Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 7.431e+02 7.431e+02 1.0e+00 7.8e-04 1 -3.36633e+01 6.791e+02 6.791e+02 9.1e-01 3.3e-02 1.4e+00 1.0e+00 2 -3.42564e+01 6.786e+02 6.786e+02 9.1e-01 1.0e-02 1.9e+00 2.0e+00 3 -3.39316e+01 6.785e+02 6.785e+02 9.1e-01 1.5e-04 2.3e+00 3.2e+00 4 -3.39278e+01 6.785e+02 6.785e+02 9.1e-01 1.1e-05 2.7e+00 4.2e+00 5 -3.39283e+01 6.785e+02 6.785e+02 9.1e-01 2.1e-08 3.0e+00 5.2e+00 6 -3.39283e+01 6.785e+02 6.785e+02 9.1e-01 7.4e-12 3.3e+00 6.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 6.8e+02 anorm = 3.3e+00 arnorm = 1.7e-08 itn = 6 r2norm = 6.8e+02 acond = 6.2e+00 xnorm = 2.2e+02 RUsage is: 1686832 Finding optimal step size... Finished opt2. Tderiv 0.022102 wall, 0.020000 cpu Topt 0.222663 wall, 0.220000 cpu Tstep 0.220803 wall, 0.220000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 7.083e+02 7.083e+02 1.0e+00 5.7e-04 1 -2.22096e+01 6.788e+02 6.788e+02 9.6e-01 2.4e-02 1.4e+00 1.0e+00 2 -2.26961e+01 6.785e+02 6.785e+02 9.6e-01 7.3e-03 1.9e+00 2.0e+00 3 -2.24460e+01 6.785e+02 6.785e+02 9.6e-01 8.1e-05 2.3e+00 3.2e+00 4 -2.24441e+01 6.785e+02 6.785e+02 9.6e-01 6.3e-06 2.7e+00 4.2e+00 5 -2.24444e+01 6.785e+02 6.785e+02 9.6e-01 2.8e-09 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 6.8e+02 anorm = 3.0e+00 arnorm = 5.7e-06 itn = 5 r2norm = 6.8e+02 acond = 5.2e+00 xnorm = 1.4e+02 RUsage is: 1686832 Finding optimal step size... Finished opt2. Tderiv 0.022861 wall, 0.020000 cpu Topt 0.201138 wall, 0.200000 cpu Tstep 0.270881 wall, 0.270000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 6.829e+02 6.829e+02 1.0e+00 2.3e-04 1 -1.01992e+01 6.785e+02 6.785e+02 9.9e-01 9.2e-03 1.4e+00 1.0e+00 2 -1.03949e+01 6.785e+02 6.785e+02 9.9e-01 2.9e-03 1.9e+00 2.0e+00 3 -1.02774e+01 6.785e+02 6.785e+02 9.9e-01 6.6e-05 2.3e+00 3.2e+00 4 -1.02762e+01 6.785e+02 6.785e+02 9.9e-01 3.4e-06 2.7e+00 4.2e+00 5 -1.02765e+01 6.785e+02 6.785e+02 9.9e-01 3.3e-09 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 6.8e+02 anorm = 3.0e+00 arnorm = 6.8e-06 itn = 5 r2norm = 6.8e+02 acond = 5.2e+00 xnorm = 5.5e+01 RUsage is: 1686832 Finding optimal step size... Finished opt2. Tderiv 0.022839 wall, 0.030000 cpu Topt 0.201383 wall, 0.200000 cpu Tstep 0.298549 wall, 0.290000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 6.786e+02 6.786e+02 1.0e+00 3.1e-05 1 -1.03749e+00 6.785e+02 6.785e+02 1.0e+00 1.1e-03 1.4e+00 1.0e+00 2 -1.05610e+00 6.785e+02 6.785e+02 1.0e+00 3.3e-04 1.9e+00 2.0e+00 3 -1.04655e+00 6.785e+02 6.785e+02 1.0e+00 4.1e-06 2.3e+00 3.2e+00 4 -1.04643e+00 6.785e+02 6.785e+02 1.0e+00 3.3e-07 2.7e+00 4.2e+00 5 -1.04645e+00 6.785e+02 6.785e+02 1.0e+00 8.1e-10 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 6.8e+02 anorm = 3.0e+00 arnorm = 1.6e-06 itn = 5 r2norm = 6.8e+02 acond = 5.2e+00 xnorm = 7.2e+00 RUsage is: 1686832 Finding optimal step size... Finished opt2. Tderiv 0.022848 wall, 0.030000 cpu Topt 0.200390 wall, 0.200000 cpu Tstep 0.299053 wall, 0.290000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 6.785e+02 6.785e+02 1.0e+00 7.4e-06 1 -2.34583e-01 6.785e+02 6.785e+02 1.0e+00 2.4e-04 1.4e+00 1.0e+00 2 -2.38362e-01 6.785e+02 6.785e+02 1.0e+00 7.5e-05 1.9e+00 2.0e+00 3 -2.36422e-01 6.785e+02 6.785e+02 1.0e+00 9.3e-07 2.3e+00 3.2e+00 4 -2.36399e-01 6.785e+02 6.785e+02 1.0e+00 7.6e-08 2.7e+00 4.2e+00 5 -2.36402e-01 6.785e+02 6.785e+02 1.0e+00 1.8e-10 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 6.8e+02 anorm = 3.0e+00 arnorm = 3.7e-07 itn = 5 r2norm = 6.8e+02 acond = 5.2e+00 xnorm = 1.7e+00 RUsage is: 1686832 Finding optimal step size... Finished opt2. Tderiv 0.022884 wall, 0.030000 cpu Topt 0.201481 wall, 0.200000 cpu Tstep 0.324745 wall, 0.310000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 6.785e+02 6.785e+02 1.0e+00 2.7e-06 1 -5.48918e-02 6.785e+02 6.785e+02 1.0e+00 5.7e-05 1.4e+00 1.0e+00 2 -5.52411e-02 6.785e+02 6.785e+02 1.0e+00 1.8e-05 1.9e+00 2.0e+00 3 -5.50637e-02 6.785e+02 6.785e+02 1.0e+00 2.2e-07 2.3e+00 3.2e+00 4 -5.50617e-02 6.785e+02 6.785e+02 1.0e+00 1.8e-08 2.7e+00 4.2e+00 5 -5.50620e-02 6.785e+02 6.785e+02 1.0e+00 4.2e-11 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 6.8e+02 anorm = 3.0e+00 arnorm = 8.6e-08 itn = 5 r2norm = 6.8e+02 acond = 5.2e+00 xnorm = 6.3e-01 RUsage is: 1686832 Finding optimal step size... Finished opt2. Tderiv 0.023075 wall, 0.020000 cpu Topt 0.201310 wall, 0.200000 cpu Tstep 0.350405 wall, 0.340000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 6.775e+02 6.775e+02 1.0e+00 3.8e-07 1 -1.27963e-02 6.775e+02 6.775e+02 1.0e+00 1.3e-05 1.4e+00 1.0e+00 2 -1.30291e-02 6.775e+02 6.775e+02 1.0e+00 4.1e-06 1.9e+00 2.0e+00 3 -1.29092e-02 6.775e+02 6.775e+02 1.0e+00 5.1e-08 2.3e+00 3.2e+00 4 -1.29078e-02 6.775e+02 6.775e+02 1.0e+00 4.1e-09 2.7e+00 4.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 6.8e+02 anorm = 2.7e+00 arnorm = 7.5e-06 itn = 4 r2norm = 6.8e+02 acond = 4.2e+00 xnorm = 8.8e-02 RUsage is: 1686832 Finding optimal step size... Finished opt2. Tderiv 0.022802 wall, 0.030000 cpu Topt 0.188854 wall, 0.190000 cpu Tstep 0.348420 wall, 0.350000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 6.775e+02 6.775e+02 1.0e+00 8.9e-08 1 -3.00455e-03 6.775e+02 6.775e+02 1.0e+00 3.1e-06 1.4e+00 1.0e+00 2 -3.05924e-03 6.775e+02 6.775e+02 1.0e+00 9.7e-07 1.9e+00 2.0e+00 3 -3.03108e-03 6.775e+02 6.775e+02 1.0e+00 1.2e-08 2.3e+00 3.2e+00 4 -3.03074e-03 6.775e+02 6.775e+02 1.0e+00 9.7e-10 2.7e+00 4.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 6.8e+02 anorm = 2.7e+00 arnorm = 1.8e-06 itn = 4 r2norm = 6.8e+02 acond = 4.2e+00 xnorm = 2.1e-02 RUsage is: 1686832 Finding optimal step size... Finished opt2. Tderiv 0.022902 wall, 0.020000 cpu Topt 0.189479 wall, 0.180000 cpu Tstep 0.347949 wall, 0.350000 cpu STEP 1 Source 0 has initial probability: -990554.004328 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.58627, 17.67081) with Mags: r=2.57095 brightness is Mags: r=2.57095 brightness is Mags: r=0.570955 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.58627, 17.67081) with Mags: r=0.570955 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source0.shape.re', 'catalog.source0.shape.ab', 'catalog.source0.shape.phi', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 7.365e+02 7.365e+02 1.0e+00 1.0e-04 1 -8.65533e-01 7.355e+02 7.355e+02 1.0e+00 2.4e-02 1.4e+00 1.0e+00 2 2.60792e+01 7.350e+02 7.350e+02 1.0e+00 1.0e-02 1.8e+00 2.5e+00 3 6.61744e+01 7.345e+02 7.345e+02 1.0e+00 6.3e-03 2.0e+00 5.2e+00 4 7.73077e+01 7.344e+02 7.344e+02 1.0e+00 3.7e-03 2.1e+00 6.7e+00 5 8.69227e+01 7.343e+02 7.343e+02 1.0e+00 7.1e-04 2.2e+00 1.0e+01 6 8.69490e+01 7.343e+02 7.343e+02 1.0e+00 2.1e-05 2.6e+00 1.2e+01 7 8.69490e+01 7.343e+02 7.343e+02 1.0e+00 1.1e-07 3.1e+00 1.4e+01 8 8.69490e+01 7.343e+02 7.343e+02 1.0e+00 1.6e-08 3.3e+00 1.6e+01 9 8.69490e+01 7.343e+02 7.343e+02 1.0e+00 4.2e-09 3.5e+00 1.7e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 7.3e+02 anorm = 3.5e+00 arnorm = 1.1e-05 itn = 9 r2norm = 7.3e+02 acond = 1.7e+01 xnorm = 1.3e+02 RUsage is: 1686832 Finding optimal step size... Finished opt2. Tderiv 0.032046 wall, 0.030000 cpu Topt 0.383435 wall, 0.390000 cpu Tstep 0.374682 wall, 0.360000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.58627, 17.67081) with Mags: r=2.06647 and Galaxy Shape: re=5.56, ab=0.96, phi=45.9 Source 0 has final probability: -990249.406685 Probability difference is: 304.597643691 Source 1 has initial probability: -990249.406685 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.54012, 17.67728) with Mags: r=3.26035 brightness is Mags: r=3.26035 brightness is Mags: r=1.26035 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.54012, 17.67728) with Mags: r=1.26035 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source1.shape.re', 'catalog.source1.shape.ab', 'catalog.source1.shape.phi', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 8.944e+02 8.944e+02 1.0e+00 6.2e-05 1 -2.76353e+01 8.934e+02 8.934e+02 1.0e+00 2.2e-02 1.1e+00 1.0e+00 2 -3.65794e+01 8.928e+02 8.928e+02 1.0e+00 1.9e-02 1.4e+00 2.5e+00 3 -4.50706e+01 8.925e+02 8.925e+02 1.0e+00 1.4e-02 1.9e+00 4.5e+00 4 -5.96486e+01 8.921e+02 8.921e+02 1.0e+00 4.9e-03 2.3e+00 7.3e+00 5 -4.67151e+01 8.919e+02 8.919e+02 1.0e+00 3.3e-03 2.4e+00 9.3e+00 6 -4.15666e+01 8.919e+02 8.919e+02 1.0e+00 3.1e-04 2.6e+00 1.1e+01 7 -4.15588e+01 8.919e+02 8.919e+02 1.0e+00 1.2e-04 2.9e+00 1.2e+01 8 -4.16413e+01 8.919e+02 8.919e+02 1.0e+00 2.2e-05 3.0e+00 1.4e+01 9 -4.16418e+01 8.919e+02 8.919e+02 1.0e+00 4.8e-08 3.4e+00 1.6e+01 10 -4.16418e+01 8.919e+02 8.919e+02 1.0e+00 3.4e-09 3.7e+00 1.7e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.9e+02 anorm = 3.7e+00 arnorm = 1.1e-05 itn = 10 r2norm = 8.9e+02 acond = 1.7e+01 xnorm = 1.8e+02 RUsage is: 1690964 Finding optimal step size... Finished opt2. Tderiv 0.035734 wall, 0.030000 cpu Topt 0.449630 wall, 0.450000 cpu Tstep 0.373180 wall, 0.370000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.54012, 17.67728) with Mags: r=1.06909 and Galaxy Shape: re=40.49, ab=0.75, phi=141.2 Source 1 has final probability: -990385.928934 Probability difference is: -136.522249192 Source 2 has initial probability: -997810.283529 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.46816, 17.66947) with Mags: r=4.10732 brightness is Mags: r=4.10732 brightness is Mags: r=2.10732 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.46816, 17.66947) with Mags: r=2.10732 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source2.shape.re', 'catalog.source2.shape.ab', 'catalog.source2.shape.phi', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 8.247e+02 8.247e+02 1.0e+00 2.7e-04 1 -1.75476e+01 8.146e+02 8.146e+02 9.9e-01 1.6e-02 1.4e+00 1.0e+00 2 -2.78965e+01 8.144e+02 8.144e+02 9.9e-01 1.1e-02 1.7e+00 2.1e+00 3 -3.70215e+01 8.143e+02 8.143e+02 9.9e-01 5.3e-03 2.2e+00 3.9e+00 4 -3.97571e+01 8.142e+02 8.142e+02 9.9e-01 2.6e-03 2.5e+00 5.6e+00 5 -4.31770e+01 8.142e+02 8.142e+02 9.9e-01 9.7e-04 2.7e+00 7.0e+00 6 -4.07117e+01 8.142e+02 8.142e+02 9.9e-01 9.9e-04 2.8e+00 9.7e+00 7 -3.96223e+01 8.142e+02 8.142e+02 9.9e-01 4.2e-04 2.9e+00 1.2e+01 8 -4.06416e+01 8.142e+02 8.142e+02 9.9e-01 3.6e-05 3.0e+00 1.5e+01 9 -4.06423e+01 8.142e+02 8.142e+02 9.9e-01 5.7e-08 3.4e+00 1.7e+01 10 -4.06423e+01 8.142e+02 8.142e+02 9.9e-01 2.7e-09 3.7e+00 1.8e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.1e+02 anorm = 3.7e+00 arnorm = 8.0e-06 itn = 10 r2norm = 8.1e+02 acond = 1.8e+01 xnorm = 1.1e+02 RUsage is: 1691108 Finding optimal step size... Finished opt2. Tderiv 0.033676 wall, 0.040000 cpu Topt 0.440202 wall, 0.430000 cpu Tstep 0.446423 wall, 0.450000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.46816, 17.66947) with Mags: r=15.3106 and Galaxy Shape: re=0.03, ab=0.28, phi=-155.0 Source 2 has final probability: -992572.503297 Probability difference is: 5237.78023207 Source 3 has initial probability: -992572.503297 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.51582, 17.78528) with Mags: r=3.51185 brightness is Mags: r=3.51185 brightness is Mags: r=1.51185 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.51582, 17.78528) with Mags: r=1.51185 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source3.shape.re', 'catalog.source3.shape.ab', 'catalog.source3.shape.phi', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 8.446e+02 8.446e+02 1.0e+00 1.6e-04 1 2.16222e+01 8.407e+02 8.407e+02 1.0e+00 2.0e-02 1.4e+00 1.0e+00 2 3.10351e+01 8.404e+02 8.404e+02 1.0e+00 1.2e-02 1.7e+00 2.1e+00 3 3.69434e+01 8.402e+02 8.402e+02 9.9e-01 8.0e-03 2.2e+00 3.9e+00 4 4.04360e+01 8.400e+02 8.400e+02 9.9e-01 6.1e-03 2.4e+00 6.3e+00 5 4.71494e+01 8.399e+02 8.399e+02 9.9e-01 2.3e-03 2.7e+00 8.3e+00 6 3.98653e+01 8.398e+02 8.398e+02 9.9e-01 1.7e-03 2.8e+00 1.0e+01 7 3.79873e+01 8.398e+02 8.398e+02 9.9e-01 2.9e-04 3.0e+00 1.2e+01 8 3.87643e+01 8.398e+02 8.398e+02 9.9e-01 1.4e-04 3.0e+00 1.3e+01 9 3.88580e+01 8.398e+02 8.398e+02 9.9e-01 4.0e-05 3.2e+00 1.5e+01 10 3.88632e+01 8.398e+02 8.398e+02 9.9e-01 8.8e-07 3.5e+00 1.6e+01 17 3.88632e+01 8.398e+02 8.398e+02 9.9e-01 9.0e-08 4.7e+00 3.5e+04 18 3.88632e+01 8.398e+02 8.398e+02 9.9e-01 2.2e-09 5.0e+00 3.7e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.4e+02 anorm = 5.0e+00 arnorm = 9.1e-06 itn = 18 r2norm = 8.4e+02 acond = 3.7e+04 xnorm = 2.0e+04 RUsage is: 1697116 Finding optimal step size... Finished opt2. Tderiv 0.036139 wall, 0.030000 cpu Topt 0.643106 wall, 0.640000 cpu Tstep 0.074251 wall, 0.070000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.51582, 17.78528) with Mags: r=1.51185 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 3 has final probability: -992789.908615 Probability difference is: -217.405317124 Source 4 has initial probability: -995700.048912 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.45069, 17.78498) with Mags: r=2.94486 brightness is Mags: r=2.94486 brightness is Mags: r=0.944858 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.45069, 17.78498) with Mags: r=0.944858 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source4.shape.re', 'catalog.source4.shape.ab', 'catalog.source4.shape.phi', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 7.526e+02 7.526e+02 1.0e+00 2.8e-04 1 2.16529e+01 7.436e+02 7.436e+02 9.9e-01 2.9e-02 1.4e+00 1.0e+00 2 3.81252e+01 7.426e+02 7.426e+02 9.9e-01 2.0e-02 1.6e+00 2.4e+00 3 3.57899e+01 7.420e+02 7.420e+02 9.9e-01 1.4e-02 1.9e+00 4.1e+00 4 4.16573e+01 7.418e+02 7.418e+02 9.9e-01 6.8e-03 2.2e+00 5.8e+00 5 4.37392e+01 7.417e+02 7.417e+02 9.9e-01 3.1e-03 2.6e+00 7.4e+00 6 3.76363e+01 7.416e+02 7.416e+02 9.9e-01 2.7e-03 2.8e+00 1.0e+01 7 3.66079e+01 7.416e+02 7.416e+02 9.9e-01 5.3e-04 2.9e+00 1.2e+01 8 3.88632e+01 7.416e+02 7.416e+02 9.9e-01 4.8e-06 3.0e+00 1.3e+01 9 3.88632e+01 7.416e+02 7.416e+02 9.9e-01 1.6e-07 3.4e+00 1.5e+01 10 3.88632e+01 7.416e+02 7.416e+02 9.9e-01 3.2e-07 3.4e+00 1.6e+01 15 3.88632e+01 7.416e+02 7.416e+02 9.9e-01 2.6e-08 4.5e+00 3.3e+04 16 3.88632e+01 7.416e+02 7.416e+02 9.9e-01 2.0e-10 4.8e+00 3.5e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 7.4e+02 anorm = 4.8e+00 arnorm = 7.0e-07 itn = 16 r2norm = 7.4e+02 acond = 3.5e+04 xnorm = 2.0e+04 RUsage is: 1697116 Finding optimal step size... Finished opt2. Tderiv 0.033592 wall, 0.030000 cpu Topt 0.562341 wall, 0.560000 cpu Tstep 0.066114 wall, 0.080000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.45069, 17.78498) with Mags: r=0.944858 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 4 has final probability: -996263.663266 Probability difference is: -563.61435409 Source 5 has initial probability: -1004587.8474 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.42721, 17.78198) with Mags: r=3.50482 brightness is Mags: r=3.50482 brightness is Mags: r=1.50482 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.42721, 17.78198) with Mags: r=1.50482 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source5.shape.re', 'catalog.source5.shape.ab', 'catalog.source5.shape.phi', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 7.436e+02 7.436e+02 1.0e+00 4.4e-04 1 2.06055e+01 7.229e+02 7.229e+02 9.7e-01 2.0e-02 1.4e+00 1.0e+00 2 3.38573e+01 7.225e+02 7.225e+02 9.7e-01 1.4e-02 1.7e+00 2.2e+00 3 3.78518e+01 7.223e+02 7.223e+02 9.7e-01 1.0e-02 2.1e+00 3.9e+00 4 3.94907e+01 7.222e+02 7.222e+02 9.7e-01 5.5e-03 2.5e+00 6.0e+00 5 4.39305e+01 7.221e+02 7.221e+02 9.7e-01 1.4e-03 2.8e+00 7.8e+00 6 3.91996e+01 7.221e+02 7.221e+02 9.7e-01 6.6e-04 2.8e+00 9.6e+00 7 3.85024e+01 7.221e+02 7.221e+02 9.7e-01 2.5e-04 3.0e+00 1.1e+01 8 3.88617e+01 7.221e+02 7.221e+02 9.7e-01 5.8e-05 3.0e+00 1.4e+01 9 3.88632e+01 7.221e+02 7.221e+02 9.7e-01 2.1e-06 3.3e+00 1.6e+01 10 3.88632e+01 7.221e+02 7.221e+02 9.7e-01 1.4e-07 3.7e+00 1.8e+01 16 3.88632e+01 7.221e+02 7.221e+02 9.7e-01 2.4e-10 4.8e+00 3.5e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 7.2e+02 anorm = 4.8e+00 arnorm = 8.5e-07 itn = 16 r2norm = 7.2e+02 acond = 3.5e+04 xnorm = 2.0e+04 RUsage is: 1697116 Finding optimal step size... Finished opt2. Tderiv 0.030278 wall, 0.030000 cpu Topt 0.491544 wall, 0.490000 cpu Tstep 0.056312 wall, 0.050000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.42721, 17.78198) with Mags: r=1.50482 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 5 has final probability: -1004808.00323 Probability difference is: -220.1558311 Source 6 has initial probability: -1007756.1124 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.57226, 17.79959) with Mags: r=3.11616 brightness is Mags: r=3.11616 brightness is Mags: r=1.11616 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.57226, 17.79959) with Mags: r=1.11616 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source6.shape.re', 'catalog.source6.shape.ab', 'catalog.source6.shape.phi', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 7.587e+02 7.587e+02 1.0e+00 4.7e-04 1 2.05447e+01 7.341e+02 7.341e+02 9.7e-01 1.7e-02 1.4e+00 1.0e+00 2 3.28138e+01 7.339e+02 7.339e+02 9.7e-01 9.3e-03 1.7e+00 2.2e+00 3 3.49036e+01 7.338e+02 7.338e+02 9.7e-01 6.4e-03 2.0e+00 3.7e+00 4 3.79952e+01 7.337e+02 7.337e+02 9.7e-01 4.5e-03 2.4e+00 5.4e+00 5 4.25080e+01 7.337e+02 7.337e+02 9.7e-01 1.5e-03 2.7e+00 7.4e+00 6 3.99075e+01 7.337e+02 7.337e+02 9.7e-01 1.5e-03 2.8e+00 9.6e+00 7 3.75904e+01 7.336e+02 7.336e+02 9.7e-01 4.4e-04 3.0e+00 1.2e+01 8 3.88632e+01 7.336e+02 7.336e+02 9.7e-01 8.1e-06 3.0e+00 1.4e+01 9 3.88632e+01 7.336e+02 7.336e+02 9.7e-01 2.8e-07 3.4e+00 1.6e+01 10 3.88632e+01 7.336e+02 7.336e+02 9.7e-01 1.9e-07 3.5e+00 1.7e+01 15 3.88632e+01 7.336e+02 7.336e+02 9.7e-01 4.3e-09 4.5e+00 3.3e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 7.3e+02 anorm = 4.5e+00 arnorm = 1.4e-05 itn = 15 r2norm = 7.3e+02 acond = 3.3e+04 xnorm = 2.0e+04 RUsage is: 1697116 Finding optimal step size... Finished opt2. Tderiv 0.032622 wall, 0.030000 cpu Topt 0.513815 wall, 0.510000 cpu Tstep 0.060918 wall, 0.060000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.57226, 17.79959) with Mags: r=1.11616 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 6 has final probability: -1008042.44796 Probability difference is: -286.33555887 Source 7 has initial probability: -1014238.46621 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.55781, 17.78946) with Mags: r=2.60948 brightness is Mags: r=2.60948 brightness is Mags: r=0.609482 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.55781, 17.78946) with Mags: r=0.609482 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source7.shape.re', 'catalog.source7.shape.ab', 'catalog.source7.shape.phi', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 8.029e+02 8.029e+02 1.0e+00 4.9e-04 1 2.04801e+01 7.710e+02 7.710e+02 9.6e-01 2.3e-02 1.4e+00 1.0e+00 2 3.02423e+01 7.706e+02 7.706e+02 9.6e-01 1.5e-02 1.8e+00 2.1e+00 3 3.67805e+01 7.703e+02 7.703e+02 9.6e-01 8.3e-03 2.2e+00 3.8e+00 4 3.80049e+01 7.701e+02 7.701e+02 9.6e-01 6.1e-03 2.5e+00 5.9e+00 5 4.45110e+01 7.700e+02 7.700e+02 9.6e-01 2.3e-03 2.7e+00 7.8e+00 6 3.74865e+01 7.699e+02 7.699e+02 9.6e-01 1.8e-03 2.8e+00 1.1e+01 7 3.69217e+01 7.699e+02 7.699e+02 9.6e-01 5.3e-04 2.9e+00 1.2e+01 8 3.86815e+01 7.699e+02 7.699e+02 9.6e-01 3.5e-04 3.0e+00 1.4e+01 9 3.88631e+01 7.699e+02 7.699e+02 9.6e-01 5.1e-06 3.3e+00 1.5e+01 10 3.88632e+01 7.699e+02 7.699e+02 9.6e-01 1.1e-06 3.5e+00 1.7e+01 17 3.88632e+01 7.699e+02 7.699e+02 9.6e-01 2.1e-09 4.9e+00 3.6e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 7.7e+02 anorm = 4.9e+00 arnorm = 8.1e-06 itn = 17 r2norm = 7.7e+02 acond = 3.6e+04 xnorm = 2.0e+04 RUsage is: 1697192 Finding optimal step size... Finished opt2. Tderiv 0.035411 wall, 0.030000 cpu Topt 0.597720 wall, 0.600000 cpu Tstep 0.068134 wall, 0.070000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.55781, 17.78946) with Mags: r=0.609482 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 7 has final probability: -1014837.61649 Probability difference is: -599.15028095 Source 8 has initial probability: -1030723.7055 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.52463, 17.78049) with Mags: r=4.25668 brightness is Mags: r=4.25668 brightness is Mags: r=2.25668 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.52463, 17.78049) with Mags: r=2.25668 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source8.shape.re', 'catalog.source8.shape.ab', 'catalog.source8.shape.phi', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.437e+02 9.437e+02 1.0e+00 4.6e-04 1 2.04497e+01 8.987e+02 8.987e+02 9.5e-01 2.0e-02 1.4e+00 1.0e+00 2 5.00765e+01 8.977e+02 8.977e+02 9.5e-01 2.6e-02 1.5e+00 2.8e+00 3 5.16084e+01 8.965e+02 8.965e+02 9.5e-01 1.3e-02 1.9e+00 5.5e+00 4 5.18675e+01 8.963e+02 8.963e+02 9.5e-01 7.1e-03 2.2e+00 7.2e+00 5 5.06336e+01 8.962e+02 8.962e+02 9.5e-01 2.8e-03 2.7e+00 9.0e+00 6 3.95812e+01 8.961e+02 8.961e+02 9.5e-01 8.6e-04 2.8e+00 1.1e+01 7 3.89281e+01 8.961e+02 8.961e+02 9.5e-01 3.1e-04 3.0e+00 1.2e+01 8 3.88637e+01 8.961e+02 8.961e+02 9.5e-01 2.1e-05 3.3e+00 1.3e+01 9 3.88626e+01 8.961e+02 8.961e+02 9.5e-01 4.4e-06 3.4e+00 1.4e+01 10 3.88632e+01 8.961e+02 8.961e+02 9.5e-01 1.1e-06 3.5e+00 1.6e+01 17 3.88632e+01 8.961e+02 8.961e+02 9.5e-01 2.7e-08 4.7e+00 3.5e+04 18 3.88632e+01 8.961e+02 8.961e+02 9.5e-01 3.2e-09 5.0e+00 3.7e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.0e+02 anorm = 5.0e+00 arnorm = 1.4e-05 itn = 18 r2norm = 9.0e+02 acond = 3.7e+04 xnorm = 2.0e+04 RUsage is: 1703224 Finding optimal step size... Finished opt2. Tderiv 0.037616 wall, 0.040000 cpu Topt 0.648210 wall, 0.640000 cpu Tstep 0.075329 wall, 0.070000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.52463, 17.78049) with Mags: r=2.25668 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 8 has final probability: -1030755.04751 Probability difference is: -31.3420145704 Source 9 has initial probability: -1031516.81923 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.51808, 17.74175) with Mags: r=2.92888 brightness is Mags: r=2.92888 brightness is Mags: r=0.928883 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.51808, 17.74175) with Mags: r=0.928883 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source9.shape.re', 'catalog.source9.shape.ab', 'catalog.source9.shape.phi', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.268e+03 1.268e+03 1.0e+00 4.7e-04 1 2.36584e+01 1.132e+03 1.132e+03 8.9e-01 2.8e-01 1.3e+00 1.0e+00 2 4.81351e+01 1.022e+03 1.022e+03 8.1e-01 2.3e-01 1.7e+00 2.6e+00 3 4.21453e+01 9.336e+02 9.336e+02 7.4e-01 1.3e-01 2.2e+00 4.7e+00 4 3.73302e+01 8.934e+02 8.934e+02 7.0e-01 4.0e-02 2.5e+00 6.4e+00 5 5.03270e+01 8.873e+02 8.873e+02 7.0e-01 4.8e-02 2.6e+00 7.6e+00 6 4.94755e+01 8.733e+02 8.733e+02 6.9e-01 2.4e-02 2.9e+00 1.1e+01 7 2.84521e+01 8.713e+02 8.713e+02 6.9e-01 8.3e-03 3.1e+00 1.2e+01 8 3.64350e+01 8.711e+02 8.711e+02 6.9e-01 4.9e-04 3.3e+00 1.4e+01 9 3.73107e+01 8.711e+02 8.711e+02 6.9e-01 3.9e-04 3.5e+00 1.5e+01 10 3.88535e+01 8.711e+02 8.711e+02 6.9e-01 2.2e-05 3.7e+00 1.7e+01 17 3.88632e+01 8.711e+02 8.711e+02 6.9e-01 5.4e-08 4.9e+00 3.6e+04 18 3.88632e+01 8.711e+02 8.711e+02 6.9e-01 1.4e-09 5.1e+00 3.7e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.7e+02 anorm = 5.1e+00 arnorm = 6.4e-06 itn = 18 r2norm = 8.7e+02 acond = 3.7e+04 xnorm = 2.0e+04 RUsage is: 1713820 Finding optimal step size... Finished opt2. Tderiv 0.042909 wall, 0.040000 cpu Topt 0.713037 wall, 0.720000 cpu Tstep 0.171804 wall, 0.170000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.51808, 17.74175) with Mags: r=0.666677 and Galaxy Shape: re=35.27, ab=0.99, phi=-53.3 Source 9 has final probability: -1025441.1192 Probability difference is: 6075.70002739 FINISHED SWITCHING TO GALAXIES Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.286e+03 1.286e+03 1.0e+00 4.8e-04 1 2.27238e+01 1.144e+03 1.144e+03 8.9e-01 2.9e-01 1.3e+00 1.0e+00 2 1.97174e+01 9.964e+02 9.964e+02 7.7e-01 2.6e-01 1.7e+00 2.8e+00 3 6.09949e+01 9.251e+02 9.251e+02 7.2e-01 8.7e-02 2.2e+00 4.7e+00 4 3.04281e+01 9.076e+02 9.076e+02 7.1e-01 8.2e-02 2.5e+00 6.0e+00 5 5.92850e+01 8.921e+02 8.921e+02 6.9e-01 4.8e-02 2.9e+00 8.1e+00 6 5.12778e+01 8.762e+02 8.762e+02 6.8e-01 4.7e-02 3.1e+00 1.1e+01 7 5.46677e+01 8.701e+02 8.701e+02 6.8e-01 2.6e-03 3.4e+00 1.3e+01 8 5.50987e+01 8.701e+02 8.701e+02 6.8e-01 4.7e-04 3.6e+00 1.4e+01 9 5.53996e+01 8.701e+02 8.701e+02 6.8e-01 2.4e-04 3.7e+00 1.5e+01 10 5.75288e+01 8.701e+02 8.701e+02 6.8e-01 4.1e-04 3.8e+00 1.8e+01 15 5.82662e+01 8.701e+02 8.701e+02 6.8e-01 1.8e-08 4.5e+00 2.6e+01 16 5.82662e+01 8.701e+02 8.701e+02 6.8e-01 3.8e-09 4.7e+00 2.8e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.7e+02 anorm = 4.7e+00 arnorm = 1.5e-05 itn = 16 r2norm = 8.7e+02 acond = 2.8e+01 xnorm = 1.9e+03 RUsage is: 1756292 Finding optimal step size... Finished opt2. Tderiv 0.193778 wall, 0.190000 cpu Topt 0.724518 wall, 0.720000 cpu Tstep 0.851737 wall, 0.850000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.346e+03 1.346e+03 1.0e+00 6.0e-04 1 1.72425e+01 1.139e+03 1.139e+03 8.5e-01 1.9e-01 1.5e+00 1.0e+00 2 1.86633e+01 1.075e+03 1.075e+03 8.0e-01 1.7e-01 1.8e+00 2.5e+00 3 5.28192e+01 1.028e+03 1.028e+03 7.6e-01 5.3e-02 2.2e+00 4.4e+00 4 3.62570e+01 1.023e+03 1.023e+03 7.6e-01 3.3e-02 2.6e+00 5.6e+00 5 5.03207e+01 1.020e+03 1.020e+03 7.6e-01 1.7e-02 3.0e+00 7.2e+00 6 4.80790e+01 1.018e+03 1.018e+03 7.6e-01 1.9e-02 3.2e+00 9.1e+00 7 5.43194e+01 1.015e+03 1.015e+03 7.5e-01 1.6e-03 3.4e+00 1.3e+01 8 5.45509e+01 1.015e+03 1.015e+03 7.5e-01 3.4e-04 3.7e+00 1.4e+01 9 5.52109e+01 1.015e+03 1.015e+03 7.5e-01 2.7e-04 3.8e+00 1.5e+01 10 5.77556e+01 1.015e+03 1.015e+03 7.5e-01 3.2e-04 3.8e+00 1.9e+01 15 5.81692e+01 1.015e+03 1.015e+03 7.5e-01 9.6e-08 4.5e+00 2.6e+01 16 5.81694e+01 1.015e+03 1.015e+03 7.5e-01 8.0e-08 4.6e+00 2.7e+01 17 5.81696e+01 1.015e+03 1.015e+03 7.5e-01 8.2e-10 4.8e+00 2.9e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.8e+00 arnorm = 4.0e-06 itn = 17 r2norm = 1.0e+03 acond = 2.9e+01 xnorm = 1.2e+03 RUsage is: 1936936 Finding optimal step size... Finished opt2. Tderiv 0.579163 wall, 0.580000 cpu Topt 1.497657 wall, 1.490000 cpu Tstep 1.797546 wall, 1.800000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.132e+03 1.132e+03 1.0e+00 4.6e-04 1 1.42176e+01 1.056e+03 1.056e+03 9.3e-01 1.2e-01 1.5e+00 1.0e+00 2 1.36681e+01 1.036e+03 1.036e+03 9.2e-01 9.9e-02 1.8e+00 2.4e+00 3 4.07667e+01 1.021e+03 1.021e+03 9.0e-01 3.3e-02 2.3e+00 4.3e+00 4 3.15634e+01 1.019e+03 1.019e+03 9.0e-01 1.6e-02 2.7e+00 5.6e+00 5 3.80797e+01 1.019e+03 1.019e+03 9.0e-01 4.5e-03 3.0e+00 7.0e+00 6 3.84945e+01 1.019e+03 1.019e+03 9.0e-01 3.7e-03 3.2e+00 8.2e+00 7 4.56075e+01 1.019e+03 1.019e+03 9.0e-01 1.2e-03 3.4e+00 1.3e+01 8 4.59641e+01 1.019e+03 1.019e+03 9.0e-01 4.2e-04 3.6e+00 1.4e+01 9 4.63280e+01 1.019e+03 1.019e+03 9.0e-01 2.2e-04 3.8e+00 1.5e+01 10 4.86979e+01 1.019e+03 1.019e+03 9.0e-01 1.9e-04 3.8e+00 1.9e+01 17 4.89076e+01 1.019e+03 1.019e+03 9.0e-01 3.0e-10 4.8e+00 2.9e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.8e+00 arnorm = 1.5e-06 itn = 17 r2norm = 1.0e+03 acond = 2.9e+01 xnorm = 6.3e+02 RUsage is: 2075264 Finding optimal step size... Finished opt2. Tderiv 0.598817 wall, 0.590000 cpu Topt 1.540477 wall, 1.540000 cpu Tstep 2.239541 wall, 2.220000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.058e+03 1.058e+03 1.0e+00 3.9e-04 1 1.73964e+00 1.022e+03 1.022e+03 9.7e-01 4.7e-02 1.6e+00 1.0e+00 2 2.60280e+00 1.020e+03 1.020e+03 9.6e-01 1.4e-02 2.0e+00 2.1e+00 3 4.38709e+00 1.020e+03 1.020e+03 9.6e-01 2.0e-03 2.4e+00 3.3e+00 4 4.76700e+00 1.020e+03 1.020e+03 9.6e-01 1.7e-03 2.6e+00 4.4e+00 5 8.27746e+00 1.020e+03 1.020e+03 9.6e-01 1.6e-03 3.0e+00 6.8e+00 6 9.05814e+00 1.019e+03 1.019e+03 9.6e-01 5.3e-04 3.4e+00 8.9e+00 7 9.60012e+00 1.019e+03 1.019e+03 9.6e-01 5.6e-04 3.5e+00 1.1e+01 8 9.85967e+00 1.019e+03 1.019e+03 9.6e-01 4.2e-04 3.6e+00 1.4e+01 9 1.00382e+01 1.019e+03 1.019e+03 9.6e-01 8.3e-05 3.8e+00 1.6e+01 10 1.06709e+01 1.019e+03 1.019e+03 9.6e-01 1.2e-04 3.9e+00 1.8e+01 16 1.10115e+01 1.019e+03 1.019e+03 9.6e-01 3.7e-08 4.7e+00 2.9e+01 17 1.10115e+01 1.019e+03 1.019e+03 9.6e-01 1.6e-10 4.8e+00 3.0e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.8e+00 arnorm = 7.9e-07 itn = 17 r2norm = 1.0e+03 acond = 3.0e+01 xnorm = 2.0e+02 RUsage is: 2191564 Finding optimal step size... Finished opt2. Tderiv 0.594124 wall, 0.600000 cpu Topt 1.575280 wall, 1.570000 cpu Tstep 2.456185 wall, 2.450000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.024e+03 1.024e+03 1.0e+00 7.6e-05 1 -6.09359e-01 1.022e+03 1.022e+03 1.0e+00 4.2e-02 1.2e+00 1.0e+00 2 -5.68491e+00 1.021e+03 1.021e+03 1.0e+00 1.5e-02 1.8e+00 2.5e+00 3 -6.78497e+00 1.020e+03 1.020e+03 1.0e+00 1.7e-02 2.0e+00 4.3e+00 4 -1.44405e+01 1.020e+03 1.020e+03 1.0e+00 5.8e-03 2.6e+00 6.5e+00 5 -1.35117e+01 1.020e+03 1.020e+03 1.0e+00 4.2e-03 2.9e+00 7.9e+00 6 -1.61617e+01 1.020e+03 1.020e+03 1.0e+00 2.3e-03 3.1e+00 1.1e+01 7 -1.62654e+01 1.019e+03 1.019e+03 1.0e+00 4.4e-04 3.4e+00 1.3e+01 8 -1.62579e+01 1.019e+03 1.019e+03 1.0e+00 1.0e-04 3.6e+00 1.4e+01 9 -1.62170e+01 1.019e+03 1.019e+03 1.0e+00 6.1e-05 3.7e+00 1.5e+01 10 -1.59984e+01 1.019e+03 1.019e+03 1.0e+00 4.0e-05 3.8e+00 1.7e+01 16 -1.56363e+01 1.019e+03 1.019e+03 1.0e+00 8.3e-08 4.6e+00 3.1e+01 17 -1.56363e+01 1.019e+03 1.019e+03 1.0e+00 1.9e-10 4.8e+00 3.2e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.8e+00 arnorm = 9.1e-07 itn = 17 r2norm = 1.0e+03 acond = 3.2e+01 xnorm = 1.9e+02 RUsage is: 2283416 Finding optimal step size... Finished opt2. Tderiv 0.612539 wall, 0.610000 cpu Topt 1.546077 wall, 1.530000 cpu Tstep 2.068635 wall, 2.070000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.022e+03 1.022e+03 1.0e+00 6.3e-05 1 6.66694e-01 1.021e+03 1.021e+03 1.0e+00 3.2e-02 1.1e+00 1.0e+00 2 -2.63985e+00 1.020e+03 1.020e+03 1.0e+00 8.1e-03 1.8e+00 2.3e+00 3 -1.85065e+00 1.020e+03 1.020e+03 1.0e+00 1.0e-02 2.1e+00 3.9e+00 4 -8.23073e+00 1.020e+03 1.020e+03 1.0e+00 4.6e-03 2.6e+00 6.7e+00 5 -8.13192e+00 1.020e+03 1.020e+03 1.0e+00 2.2e-03 3.0e+00 8.3e+00 6 -9.16955e+00 1.020e+03 1.020e+03 1.0e+00 1.9e-03 3.1e+00 1.1e+01 7 -9.32158e+00 1.020e+03 1.020e+03 1.0e+00 8.7e-04 3.4e+00 1.2e+01 8 -9.31582e+00 1.020e+03 1.020e+03 1.0e+00 9.7e-05 3.6e+00 1.4e+01 9 -9.27199e+00 1.020e+03 1.020e+03 1.0e+00 3.4e-05 3.8e+00 1.5e+01 10 -9.00875e+00 1.020e+03 1.020e+03 1.0e+00 3.8e-05 3.8e+00 1.7e+01 15 -8.79353e+00 1.020e+03 1.020e+03 1.0e+00 4.0e-08 4.5e+00 2.9e+01 16 -8.79352e+00 1.020e+03 1.020e+03 1.0e+00 1.0e-08 4.7e+00 3.1e+01 17 -8.79352e+00 1.020e+03 1.020e+03 1.0e+00 8.6e-11 4.8e+00 3.2e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.8e+00 arnorm = 4.2e-07 itn = 17 r2norm = 1.0e+03 acond = 3.2e+01 xnorm = 1.2e+02 RUsage is: 2369928 Finding optimal step size... Finished opt2. Tderiv 0.610928 wall, 0.610000 cpu Topt 1.584785 wall, 1.570000 cpu Tstep 2.275311 wall, 2.280000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.021e+03 1.021e+03 1.0e+00 2.8e-05 1 2.74182e+00 1.020e+03 1.020e+03 1.0e+00 1.7e-02 1.1e+00 1.0e+00 2 -3.79276e-02 1.020e+03 1.020e+03 1.0e+00 4.5e-03 1.9e+00 2.4e+00 3 6.74552e-01 1.020e+03 1.020e+03 1.0e+00 4.8e-03 2.2e+00 4.1e+00 4 -7.22181e-01 1.020e+03 1.020e+03 1.0e+00 1.9e-03 2.7e+00 6.6e+00 5 -7.80455e-01 1.020e+03 1.020e+03 1.0e+00 1.2e-03 2.9e+00 8.0e+00 6 -1.29100e+00 1.020e+03 1.020e+03 1.0e+00 7.1e-04 3.1e+00 1.1e+01 7 -1.31313e+00 1.020e+03 1.020e+03 1.0e+00 2.9e-04 3.3e+00 1.2e+01 8 -1.29147e+00 1.020e+03 1.020e+03 1.0e+00 2.5e-05 3.6e+00 1.4e+01 9 -1.25481e+00 1.020e+03 1.020e+03 1.0e+00 1.8e-05 3.7e+00 1.5e+01 10 -1.06066e+00 1.020e+03 1.020e+03 1.0e+00 1.6e-05 3.8e+00 1.8e+01 15 -1.04396e+00 1.020e+03 1.020e+03 1.0e+00 3.3e-08 4.5e+00 2.9e+01 16 -1.04396e+00 1.020e+03 1.020e+03 1.0e+00 1.3e-09 4.7e+00 3.1e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.7e+00 arnorm = 6.4e-06 itn = 16 r2norm = 1.0e+03 acond = 3.1e+01 xnorm = 6.1e+01 RUsage is: 2468744 Finding optimal step size... Finished opt2. Tderiv 0.613479 wall, 0.610000 cpu Topt 1.540386 wall, 1.530000 cpu Tstep 2.475504 wall, 2.470000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.020e+03 1.020e+03 1.0e+00 1.2e-05 1 1.20222e+00 1.020e+03 1.020e+03 1.0e+00 3.8e-03 1.4e+00 1.0e+00 2 6.11579e-01 1.020e+03 1.020e+03 1.0e+00 1.3e-03 2.0e+00 2.3e+00 3 9.67619e-01 1.020e+03 1.020e+03 1.0e+00 5.5e-04 2.5e+00 3.5e+00 4 1.01620e+00 1.020e+03 1.020e+03 1.0e+00 5.2e-04 2.7e+00 5.7e+00 5 1.10127e+00 1.020e+03 1.020e+03 1.0e+00 1.7e-04 3.1e+00 7.7e+00 6 1.03089e+00 1.020e+03 1.020e+03 1.0e+00 2.2e-04 3.1e+00 9.6e+00 7 9.48976e-01 1.020e+03 1.020e+03 1.0e+00 1.0e-04 3.4e+00 1.2e+01 8 9.39368e-01 1.020e+03 1.020e+03 1.0e+00 1.8e-05 3.6e+00 1.4e+01 9 9.49489e-01 1.020e+03 1.020e+03 1.0e+00 1.2e-05 3.8e+00 1.5e+01 10 1.03637e+00 1.020e+03 1.020e+03 1.0e+00 1.1e-05 3.9e+00 1.9e+01 15 9.90957e-01 1.020e+03 1.020e+03 1.0e+00 1.9e-08 4.5e+00 2.9e+01 16 9.90956e-01 1.020e+03 1.020e+03 1.0e+00 7.9e-10 4.7e+00 3.0e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.7e+00 arnorm = 3.8e-06 itn = 16 r2norm = 1.0e+03 acond = 3.0e+01 xnorm = 1.2e+01 RUsage is: 2561160 Finding optimal step size... Finished opt2. Tderiv 0.615619 wall, 0.610000 cpu Topt 1.526654 wall, 1.520000 cpu Tstep 2.478751 wall, 2.470000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.020e+03 1.020e+03 1.0e+00 4.5e-06 1 7.96273e-01 1.020e+03 1.020e+03 1.0e+00 1.6e-03 1.4e+00 1.0e+00 2 5.07224e-01 1.020e+03 1.020e+03 1.0e+00 7.0e-04 1.8e+00 2.5e+00 3 2.39370e-01 1.020e+03 1.020e+03 1.0e+00 5.8e-04 2.1e+00 4.0e+00 4 2.89290e-01 1.020e+03 1.020e+03 1.0e+00 1.8e-04 2.5e+00 5.9e+00 5 1.45552e-01 1.020e+03 1.020e+03 1.0e+00 1.7e-04 2.7e+00 7.1e+00 6 -1.04266e-01 1.020e+03 1.020e+03 1.0e+00 7.9e-05 2.9e+00 1.1e+01 7 -1.27391e-01 1.020e+03 1.020e+03 1.0e+00 9.9e-06 3.3e+00 1.2e+01 8 -1.24349e-01 1.020e+03 1.020e+03 1.0e+00 2.3e-06 3.5e+00 1.3e+01 9 -1.22598e-01 1.020e+03 1.020e+03 1.0e+00 7.9e-07 3.7e+00 1.5e+01 10 -1.18536e-01 1.020e+03 1.020e+03 1.0e+00 5.7e-07 3.8e+00 1.6e+01 12 -1.16793e-01 1.020e+03 1.020e+03 1.0e+00 9.6e-08 4.0e+00 1.9e+01 13 -1.16067e-01 1.020e+03 1.020e+03 1.0e+00 6.2e-08 4.1e+00 2.2e+01 14 -1.16016e-01 1.020e+03 1.020e+03 1.0e+00 1.5e-10 4.4e+00 2.3e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.4e+00 arnorm = 6.7e-07 itn = 14 r2norm = 1.0e+03 acond = 2.3e+01 xnorm = 7.7e+00 RUsage is: 2653740 Finding optimal step size... Finished opt2. Tderiv 0.617021 wall, 0.610000 cpu Topt 1.475640 wall, 1.480000 cpu Tstep 2.264992 wall, 2.260000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.020e+03 1.020e+03 1.0e+00 1.6e-06 1 3.07219e-01 1.020e+03 1.020e+03 1.0e+00 3.3e-04 1.5e+00 1.0e+00 2 2.79496e-01 1.020e+03 1.020e+03 1.0e+00 1.4e-04 1.8e+00 2.3e+00 3 2.39691e-01 1.020e+03 1.020e+03 1.0e+00 1.5e-04 2.1e+00 3.8e+00 4 2.60335e-01 1.020e+03 1.020e+03 1.0e+00 6.0e-05 2.5e+00 6.7e+00 5 2.26904e-01 1.020e+03 1.020e+03 1.0e+00 4.0e-05 2.8e+00 8.1e+00 6 1.77192e-01 1.020e+03 1.020e+03 1.0e+00 2.6e-05 3.0e+00 1.1e+01 7 1.66985e-01 1.020e+03 1.020e+03 1.0e+00 6.4e-06 3.3e+00 1.2e+01 8 1.67667e-01 1.020e+03 1.020e+03 1.0e+00 6.8e-07 3.4e+00 1.3e+01 9 1.68711e-01 1.020e+03 1.020e+03 1.0e+00 4.5e-07 3.6e+00 1.4e+01 10 1.70364e-01 1.020e+03 1.020e+03 1.0e+00 1.8e-07 3.8e+00 1.6e+01 11 1.70570e-01 1.020e+03 1.020e+03 1.0e+00 4.9e-08 3.9e+00 1.7e+01 12 1.70586e-01 1.020e+03 1.020e+03 1.0e+00 6.5e-09 4.1e+00 1.8e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.1e+00 arnorm = 2.7e-05 itn = 12 r2norm = 1.0e+03 acond = 1.8e+01 xnorm = 2.0e+00 RUsage is: 2740248 Finding optimal step size... Finished opt2. Tderiv 0.615494 wall, 0.600000 cpu Topt 1.398009 wall, 1.400000 cpu Tstep 2.489622 wall, 2.480000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.020e+03 1.020e+03 1.0e+00 8.4e-07 1 1.10847e-01 1.020e+03 1.020e+03 1.0e+00 1.3e-04 1.5e+00 1.0e+00 2 1.14186e-01 1.020e+03 1.020e+03 1.0e+00 5.0e-05 1.9e+00 2.2e+00 3 1.03806e-01 1.020e+03 1.020e+03 1.0e+00 3.6e-05 2.2e+00 3.5e+00 4 1.31101e-01 1.020e+03 1.020e+03 1.0e+00 4.0e-05 2.5e+00 6.9e+00 5 1.15514e-01 1.020e+03 1.020e+03 1.0e+00 7.8e-06 2.9e+00 9.2e+00 6 1.12460e-01 1.020e+03 1.020e+03 1.0e+00 5.4e-06 3.1e+00 1.0e+01 7 1.03686e-01 1.020e+03 1.020e+03 1.0e+00 2.6e-06 3.3e+00 1.2e+01 8 9.94869e-02 1.020e+03 1.020e+03 1.0e+00 2.0e-07 3.4e+00 1.3e+01 9 9.95705e-02 1.020e+03 1.020e+03 1.0e+00 1.0e-07 3.6e+00 1.5e+01 10 9.98082e-02 1.020e+03 1.020e+03 1.0e+00 5.6e-08 3.8e+00 1.6e+01 11 9.98415e-02 1.020e+03 1.020e+03 1.0e+00 2.5e-08 3.9e+00 1.7e+01 12 9.98024e-02 1.020e+03 1.020e+03 1.0e+00 1.7e-08 4.0e+00 1.9e+01 13 9.95776e-02 1.020e+03 1.020e+03 1.0e+00 4.4e-09 4.1e+00 2.2e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.1e+00 arnorm = 1.8e-05 itn = 13 r2norm = 1.0e+03 acond = 2.2e+01 xnorm = 7.6e-01 RUsage is: 2839064 Finding optimal step size... Finished opt2. Tderiv 0.619427 wall, 0.620000 cpu Topt 1.432961 wall, 1.430000 cpu Tstep 2.671622 wall, 2.660000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.020e+03 1.020e+03 1.0e+00 4.1e-07 1 4.23531e-02 1.020e+03 1.020e+03 1.0e+00 7.7e-05 1.5e+00 1.0e+00 2 4.12131e-02 1.020e+03 1.020e+03 1.0e+00 2.6e-05 1.9e+00 2.2e+00 3 3.58945e-02 1.020e+03 1.020e+03 1.0e+00 1.8e-05 2.2e+00 3.5e+00 4 4.56004e-02 1.020e+03 1.020e+03 1.0e+00 1.6e-05 2.5e+00 6.4e+00 5 3.91004e-02 1.020e+03 1.020e+03 1.0e+00 6.0e-06 2.8e+00 8.3e+00 6 4.21665e-02 1.020e+03 1.020e+03 1.0e+00 6.3e-06 3.0e+00 1.0e+01 7 4.01208e-02 1.020e+03 1.020e+03 1.0e+00 2.4e-06 3.3e+00 1.2e+01 8 4.02974e-02 1.020e+03 1.020e+03 1.0e+00 1.3e-07 3.4e+00 1.3e+01 9 4.02675e-02 1.020e+03 1.020e+03 1.0e+00 2.2e-08 3.7e+00 1.5e+01 10 4.01111e-02 1.020e+03 1.020e+03 1.0e+00 2.7e-08 3.8e+00 1.6e+01 11 3.99490e-02 1.020e+03 1.020e+03 1.0e+00 1.6e-08 3.9e+00 1.9e+01 12 3.99205e-02 1.020e+03 1.020e+03 1.0e+00 4.7e-09 4.1e+00 2.0e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.1e+00 arnorm = 2.0e-05 itn = 12 r2norm = 1.0e+03 acond = 2.0e+01 xnorm = 3.7e-01 RUsage is: 2937820 Finding optimal step size... Finished opt2. Tderiv 0.614884 wall, 0.610000 cpu Topt 1.387042 wall, 1.380000 cpu Tstep 2.681542 wall, 2.680000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.020e+03 1.020e+03 1.0e+00 1.9e-07 1 1.70024e-02 1.020e+03 1.020e+03 1.0e+00 4.8e-05 1.5e+00 1.0e+00 2 1.40747e-02 1.020e+03 1.020e+03 1.0e+00 1.3e-05 1.9e+00 2.3e+00 3 1.09862e-02 1.020e+03 1.020e+03 1.0e+00 1.0e-05 2.2e+00 3.5e+00 4 1.36560e-02 1.020e+03 1.020e+03 1.0e+00 7.3e-06 2.5e+00 6.3e+00 5 1.05874e-02 1.020e+03 1.020e+03 1.0e+00 3.3e-06 2.8e+00 7.9e+00 6 1.40903e-02 1.020e+03 1.020e+03 1.0e+00 3.4e-06 3.0e+00 1.0e+01 7 1.36623e-02 1.020e+03 1.020e+03 1.0e+00 1.4e-06 3.2e+00 1.2e+01 8 1.40784e-02 1.020e+03 1.020e+03 1.0e+00 9.3e-08 3.4e+00 1.3e+01 9 1.40202e-02 1.020e+03 1.020e+03 1.0e+00 3.0e-08 3.7e+00 1.5e+01 10 1.37776e-02 1.020e+03 1.020e+03 1.0e+00 1.2e-08 3.8e+00 1.6e+01 11 1.37510e-02 1.020e+03 1.020e+03 1.0e+00 8.4e-09 3.9e+00 1.7e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 3.9e+00 arnorm = 3.3e-05 itn = 11 r2norm = 1.0e+03 acond = 1.7e+01 xnorm = 2.0e-01 RUsage is: 3036572 Finding optimal step size... Finished opt2. Tderiv 0.615958 wall, 0.610000 cpu Topt 1.345328 wall, 1.340000 cpu Tstep 2.688326 wall, 2.680000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 94 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 188 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.020e+03 1.020e+03 1.0e+00 1.4e-07 1 1.21950e-02 1.020e+03 1.020e+03 1.0e+00 3.9e-05 1.4e+00 1.0e+00 2 9.38630e-03 1.020e+03 1.020e+03 1.0e+00 1.0e-05 1.9e+00 2.3e+00 3 6.93610e-03 1.020e+03 1.020e+03 1.0e+00 7.9e-06 2.2e+00 3.5e+00 4 8.45071e-03 1.020e+03 1.020e+03 1.0e+00 5.4e-06 2.5e+00 6.3e+00 5 6.14262e-03 1.020e+03 1.020e+03 1.0e+00 2.6e-06 2.8e+00 7.9e+00 6 9.10511e-03 1.020e+03 1.020e+03 1.0e+00 2.6e-06 3.0e+00 1.0e+01 7 8.86124e-03 1.020e+03 1.020e+03 1.0e+00 1.1e-06 3.2e+00 1.2e+01 8 9.25195e-03 1.020e+03 1.020e+03 1.0e+00 7.6e-08 3.4e+00 1.3e+01 9 9.19877e-03 1.020e+03 1.020e+03 1.0e+00 2.7e-08 3.7e+00 1.5e+01 10 8.98992e-03 1.020e+03 1.020e+03 1.0e+00 9.4e-09 3.8e+00 1.6e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 3.8e+00 arnorm = 3.6e-05 itn = 10 r2norm = 1.0e+03 acond = 1.6e+01 xnorm = 1.5e-01 RUsage is: 3135324 Finding optimal step size... Finished opt2. Tderiv 0.615056 wall, 0.620000 cpu Topt 1.332588 wall, 1.320000 cpu Tstep 2.673908 wall, 2.670000 cpu STEP 2: Tractor: Finding derivs... Finding optimal update direction... Starting psf optimisation {'images': 0, 'catalog': 1} Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.75, 0.25, 0.0, 0.0, 0.0, 0.0, 4.5269352648257124, 4.5269352648257124, 0.0, 18.10774105930285, 18.10774105930285, 0.0] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.020e+03 1.020e+03 1.0e+00 1.7e-04 1 -2.43805e+01 1.016e+03 1.016e+03 1.0e+00 3.4e-02 1.8e+00 1.0e+00 2 -2.35465e+01 1.014e+03 1.014e+03 9.9e-01 1.9e-02 2.2e+00 2.6e+00 3 -2.96966e+01 1.012e+03 1.012e+03 9.9e-01 3.5e-03 2.5e+00 4.6e+00 4 -3.38697e+01 1.012e+03 1.012e+03 9.9e-01 2.1e-03 2.6e+00 6.1e+00 5 -4.14724e+01 1.012e+03 1.012e+03 9.9e-01 3.2e-03 2.7e+00 8.2e+00 6 -9.34841e+01 1.012e+03 1.012e+03 9.9e-01 1.9e-03 2.9e+00 1.7e+01 7 -9.75849e+01 1.012e+03 1.012e+03 9.9e-01 7.7e-04 3.0e+00 1.9e+01 8 -9.84772e+01 1.012e+03 1.012e+03 9.9e-01 3.5e-04 3.2e+00 2.0e+01 9 -9.87111e+01 1.012e+03 1.012e+03 9.9e-01 6.1e-05 3.4e+00 2.2e+01 10 -9.87282e+01 1.012e+03 1.012e+03 9.9e-01 3.8e-06 3.4e+00 2.3e+01 11 -9.87283e+01 1.012e+03 1.012e+03 9.9e-01 5.0e-08 3.5e+00 2.4e+01 12 -9.87284e+01 1.012e+03 1.012e+03 9.9e-01 1.8e-08 3.9e+00 2.7e+01 13 -3.17236e+03 1.012e+03 1.012e+03 9.9e-01 1.9e-08 4.0e+00 3.2e+04 14 -3.17236e+03 1.012e+03 1.012e+03 9.9e-01 5.0e-10 4.2e+00 3.4e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.2e+00 arnorm = 2.1e-06 itn = 14 r2norm = 1.0e+03 acond = 3.4e+04 xnorm = 4.4e+03 RUsage is: 3941700 Finding optimal step size... Finished opt2. Tderiv 2.448458 wall, 2.450000 cpu Topt 3.632704 wall, 3.610000 cpu Tstep 1.042193 wall, 1.040000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.73208924659128216, 0.26791075340871784, 0.0030711534882854755, -0.0071700093320106592, -0.0078435327653620223, 0.13883421118538997, 4.5135484586921573, 4.5161288450327994, 0.0008318467500257169, 17.705793231443877, 17.624270678685303, -0.074126534853460296] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.020e+03 1.020e+03 1.0e+00 9.6e-06 1 -4.24449e-01 1.020e+03 1.020e+03 1.0e+00 7.9e-03 1.9e+00 1.0e+00 2 -2.79712e+02 1.017e+03 1.017e+03 1.0e+00 3.9e-04 3.5e+00 3.3e+01 3 -3.82959e+02 1.017e+03 1.017e+03 1.0e+00 3.0e-04 3.5e+00 5.9e+01 4 -7.68390e+02 1.016e+03 1.016e+03 1.0e+00 7.4e-05 3.5e+00 1.4e+02 5 -8.10808e+02 1.016e+03 1.016e+03 1.0e+00 7.2e-04 3.5e+00 1.8e+02 6 -8.11142e+02 1.016e+03 1.016e+03 1.0e+00 9.2e-05 4.9e+00 2.5e+02 7 -1.07095e+03 1.016e+03 1.016e+03 1.0e+00 1.1e-04 4.9e+00 5.0e+02 8 -3.98910e+03 1.013e+03 1.013e+03 9.9e-01 7.1e-05 4.9e+00 2.0e+03 9 -4.08244e+03 1.013e+03 1.013e+03 9.9e-01 1.1e-03 4.9e+00 2.0e+03 10 -4.08356e+03 1.013e+03 1.013e+03 9.9e-01 1.6e-05 6.0e+00 2.5e+03 11 -6.35213e+03 1.012e+03 1.012e+03 9.9e-01 2.0e-06 6.0e+00 3.1e+03 12 -6.40366e+03 1.012e+03 1.012e+03 9.9e-01 2.0e-05 6.0e+00 3.2e+03 13 -6.41439e+03 1.012e+03 1.012e+03 9.9e-01 3.0e-04 6.0e+00 3.2e+03 14 -7.68195e+03 1.012e+03 1.012e+03 9.9e-01 1.1e-06 6.9e+00 4.9e+03 15 -7.68309e+03 1.012e+03 1.012e+03 9.9e-01 7.4e-07 6.9e+00 4.9e+03 16 -9.85784e+03 1.012e+03 1.012e+03 9.9e-01 3.2e-06 6.9e+00 7.8e+03 17 -9.85787e+03 1.012e+03 1.012e+03 9.9e-01 5.6e-06 7.1e+00 8.0e+03 18 -9.87293e+03 1.012e+03 1.012e+03 9.9e-01 6.9e-07 7.7e+00 8.7e+03 19 -1.08150e+04 1.012e+03 1.012e+03 9.9e-01 1.6e-08 7.7e+00 1.0e+04 20 -1.08150e+04 1.012e+03 1.012e+03 9.9e-01 5.1e-07 7.7e+00 1.0e+04 21 -1.08150e+04 1.012e+03 1.012e+03 9.9e-01 3.2e-09 8.5e+00 1.1e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 8.5e+00 arnorm = 2.8e-05 itn = 21 r2norm = 1.0e+03 acond = 1.1e+04 xnorm = 4.0e+04 RUsage is: 4003420 Finding optimal step size... Finished opt2. Tderiv 2.429844 wall, 2.420000 cpu Topt 4.271919 wall, 4.260000 cpu Tstep 1.851550 wall, 1.850000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.45133789512826739, 0.54866210487173261, 0.052630188580925837, -0.12676510108783542, -0.11784336445471791, 2.0462380347080154, 4.3828579933615677, 4.4172221258895377, 0.017298932839183573, 13.549695365883579, 12.226158379513294, -1.1015895860867992] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 1.5e-05 1 1.68756e-01 1.016e+03 1.016e+03 1.0e+00 1.1e-03 3.4e+00 1.0e+00 2 -2.96705e+02 1.015e+03 1.015e+03 1.0e+00 2.9e-04 3.5e+00 3.8e+01 3 -5.58170e+02 1.015e+03 1.015e+03 1.0e+00 3.6e-04 3.5e+00 1.2e+02 4 -6.59716e+02 1.014e+03 1.014e+03 1.0e+00 8.7e-05 3.5e+00 1.6e+02 5 -6.92498e+02 1.014e+03 1.014e+03 1.0e+00 3.0e-03 3.5e+00 1.7e+02 6 -7.09059e+02 1.014e+03 1.014e+03 1.0e+00 3.1e-05 4.9e+00 2.5e+02 7 -8.41151e+02 1.014e+03 1.014e+03 1.0e+00 3.6e-05 4.9e+00 3.6e+02 8 -1.09850e+03 1.014e+03 1.014e+03 1.0e+00 5.6e-05 4.9e+00 7.4e+02 9 -1.58416e+03 1.014e+03 1.014e+03 1.0e+00 5.0e-03 4.9e+00 1.1e+03 10 -1.68968e+03 1.014e+03 1.014e+03 1.0e+00 3.1e-05 6.0e+00 1.4e+03 11 -3.84288e+03 1.014e+03 1.014e+03 1.0e+00 2.2e-05 6.0e+00 2.4e+03 12 -8.04659e+03 1.013e+03 1.013e+03 1.0e+00 1.5e-05 6.0e+00 3.3e+03 13 -8.04661e+03 1.013e+03 1.013e+03 1.0e+00 2.8e-05 6.2e+00 3.5e+03 14 -8.14214e+03 1.013e+03 1.013e+03 1.0e+00 4.2e-05 6.9e+00 3.9e+03 15 -8.41235e+03 1.013e+03 1.013e+03 1.0e+00 2.4e-06 6.9e+00 4.0e+03 16 -8.41275e+03 1.013e+03 1.013e+03 1.0e+00 7.8e-06 6.9e+00 4.1e+03 17 -8.41275e+03 1.013e+03 1.013e+03 1.0e+00 3.7e-06 7.6e+00 4.5e+03 18 -8.41432e+03 1.013e+03 1.013e+03 1.0e+00 3.4e-09 7.7e+00 4.6e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 7.7e+00 arnorm = 2.7e-05 itn = 18 r2norm = 1.0e+03 acond = 4.6e+03 xnorm = 2.5e+04 RUsage is: 4163400 Finding optimal step size... Finished opt2. Tderiv 2.547668 wall, 2.540000 cpu Topt 4.000742 wall, 3.980000 cpu Tstep 1.242076 wall, 1.240000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.47870923881728239, 0.52129076118271755, 0.060139300824456919, -0.12724535782766919, -0.13314757822408102, 2.1777448099151502, 4.5006456234501133, 4.5240755960016177, 0.010983432275390923, 13.962098484523789, 12.309107602258321, -1.1535394578185507] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 2.2e-05 1 -3.66261e-01 1.016e+03 1.016e+03 1.0e+00 5.2e-03 2.9e+00 1.0e+00 2 -8.61042e+01 1.015e+03 1.015e+03 1.0e+00 1.0e-03 3.4e+00 1.1e+01 3 -1.65638e+02 1.015e+03 1.015e+03 1.0e+00 1.2e-03 3.4e+00 3.4e+01 4 -2.00162e+02 1.014e+03 1.014e+03 1.0e+00 3.0e-04 3.5e+00 4.7e+01 5 -2.14554e+02 1.014e+03 1.014e+03 1.0e+00 1.5e-04 3.5e+00 5.2e+01 6 -2.49612e+02 1.014e+03 1.014e+03 1.0e+00 2.2e-04 3.5e+00 7.3e+01 7 -2.49694e+02 1.014e+03 1.014e+03 1.0e+00 1.8e-04 4.2e+00 8.9e+01 8 -2.96016e+02 1.014e+03 1.014e+03 1.0e+00 1.7e-04 4.9e+00 1.8e+02 9 -5.16327e+02 1.014e+03 1.014e+03 1.0e+00 1.2e-04 4.9e+00 3.4e+02 10 -1.49369e+03 1.014e+03 1.014e+03 1.0e+00 9.6e-05 4.9e+00 6.3e+02 11 -2.00857e+03 1.013e+03 1.013e+03 1.0e+00 4.8e-03 4.9e+00 7.4e+02 12 -2.08155e+03 1.013e+03 1.013e+03 1.0e+00 8.3e-05 6.0e+00 9.2e+02 13 -2.82720e+03 1.013e+03 1.013e+03 1.0e+00 4.0e-04 6.0e+00 1.0e+03 14 -2.95415e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-06 6.0e+00 1.1e+03 15 -2.95329e+03 1.013e+03 1.013e+03 1.0e+00 6.0e-06 6.0e+00 1.1e+03 16 -2.95323e+03 1.013e+03 1.013e+03 1.0e+00 2.4e-05 6.0e+00 1.1e+03 17 -2.95184e+03 1.013e+03 1.013e+03 1.0e+00 5.9e-10 6.9e+00 1.3e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.9e+00 arnorm = 4.1e-06 itn = 17 r2norm = 1.0e+03 acond = 1.3e+03 xnorm = 8.0e+03 RUsage is: 4277772 Finding optimal step size... Finished opt2. Tderiv 2.430478 wall, 2.430000 cpu Topt 3.832820 wall, 3.820000 cpu Tstep 1.241402 wall, 1.230000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.50696859041833287, 0.49303140958166713, 0.067577586500607717, -0.12698780766745527, -0.15198232822227997, 2.3243274647841647, 4.6187502008980106, 4.627780879579273, 0.0043463832966947032, 14.411045338272825, 12.367218847356748, -1.2047581356118799] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 2.2e-05 1 -3.04547e-01 1.016e+03 1.016e+03 1.0e+00 5.0e-03 2.9e+00 1.0e+00 2 -9.05654e+01 1.015e+03 1.015e+03 1.0e+00 9.4e-04 3.4e+00 1.2e+01 3 -1.72872e+02 1.015e+03 1.015e+03 1.0e+00 1.2e-03 3.4e+00 3.5e+01 4 -2.17262e+02 1.014e+03 1.014e+03 1.0e+00 3.0e-04 3.5e+00 5.0e+01 5 -2.31260e+02 1.014e+03 1.014e+03 1.0e+00 1.5e-04 3.5e+00 5.5e+01 6 -2.65784e+02 1.014e+03 1.014e+03 1.0e+00 9.4e-04 3.5e+00 7.7e+01 7 -2.66526e+02 1.014e+03 1.014e+03 1.0e+00 9.9e-05 4.9e+00 1.1e+02 8 -2.95831e+02 1.014e+03 1.014e+03 1.0e+00 1.4e-04 4.9e+00 1.7e+02 9 -5.25845e+02 1.014e+03 1.014e+03 1.0e+00 9.8e-05 4.9e+00 3.3e+02 10 -1.82633e+03 1.014e+03 1.014e+03 1.0e+00 1.0e-04 4.9e+00 6.9e+02 11 -2.15493e+03 1.013e+03 1.013e+03 1.0e+00 7.6e-03 4.9e+00 7.7e+02 12 -2.48011e+03 1.013e+03 1.013e+03 1.0e+00 6.5e-05 6.0e+00 1.0e+03 13 -3.48537e+03 1.013e+03 1.013e+03 1.0e+00 2.2e-04 6.0e+00 1.2e+03 14 -3.53548e+03 1.013e+03 1.013e+03 1.0e+00 1.3e-05 6.0e+00 1.2e+03 15 -3.64609e+03 1.013e+03 1.013e+03 1.0e+00 1.4e-05 6.0e+00 1.3e+03 16 -3.64611e+03 1.013e+03 1.013e+03 1.0e+00 3.4e-05 6.1e+00 1.3e+03 17 -3.64637e+03 1.013e+03 1.013e+03 1.0e+00 9.3e-09 6.9e+00 1.5e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.9e+00 arnorm = 6.5e-05 itn = 17 r2norm = 1.0e+03 acond = 1.5e+03 xnorm = 9.3e+03 RUsage is: 4392940 Finding optimal step size... Finished opt2. Tderiv 2.410227 wall, 2.400000 cpu Topt 4.047670 wall, 4.040000 cpu Tstep 1.238386 wall, 1.240000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.53581256623048568, 0.46418743376951438, 0.074949848778685269, -0.12594396059305887, -0.17488731552567488, 2.486923096623971, 4.7363645720414773, 4.7269847165455152, -0.0024948324203111225, 14.89827371982957, 12.393253014174146, -1.2535134076415293] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 2.1e-05 1 -2.53985e-01 1.016e+03 1.016e+03 1.0e+00 4.9e-03 2.9e+00 1.0e+00 2 -9.46407e+01 1.015e+03 1.015e+03 1.0e+00 9.0e-04 3.4e+00 1.2e+01 3 -1.78380e+02 1.015e+03 1.015e+03 1.0e+00 1.2e-03 3.5e+00 3.6e+01 4 -2.32087e+02 1.014e+03 1.014e+03 1.0e+00 3.1e-04 3.5e+00 5.3e+01 5 -2.45279e+02 1.014e+03 1.014e+03 1.0e+00 1.4e-04 3.5e+00 5.8e+01 6 -2.76811e+02 1.014e+03 1.014e+03 1.0e+00 2.2e-03 3.5e+00 8.2e+01 7 -2.80278e+02 1.014e+03 1.014e+03 1.0e+00 8.6e-05 4.9e+00 1.2e+02 8 -3.08261e+02 1.014e+03 1.014e+03 1.0e+00 1.4e-04 4.9e+00 1.8e+02 9 -5.25911e+02 1.014e+03 1.014e+03 1.0e+00 7.5e-05 4.9e+00 3.3e+02 10 -1.90450e+03 1.014e+03 1.014e+03 1.0e+00 9.9e-05 4.9e+00 7.0e+02 11 -1.90469e+03 1.014e+03 1.014e+03 1.0e+00 2.3e-04 5.1e+00 7.2e+02 12 -2.95166e+03 1.013e+03 1.013e+03 1.0e+00 6.2e-05 6.0e+00 1.1e+03 13 -3.53725e+03 1.013e+03 1.013e+03 1.0e+00 5.5e-04 6.0e+00 1.3e+03 14 -4.10261e+03 1.013e+03 1.013e+03 1.0e+00 1.9e-05 6.0e+00 1.4e+03 15 -4.29242e+03 1.013e+03 1.013e+03 1.0e+00 2.1e-03 6.0e+00 1.4e+03 16 -4.41485e+03 1.013e+03 1.013e+03 1.0e+00 5.7e-05 6.9e+00 1.7e+03 17 -4.43770e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-07 6.9e+00 1.7e+03 18 -4.43770e+03 1.013e+03 1.013e+03 1.0e+00 3.9e-11 6.9e+00 1.7e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.9e+00 arnorm = 2.7e-07 itn = 18 r2norm = 1.0e+03 acond = 1.7e+03 xnorm = 1.1e+04 RUsage is: 4515268 Finding optimal step size... Finished opt2. Tderiv 2.407324 wall, 2.400000 cpu Topt 3.899808 wall, 3.880000 cpu Tstep 1.039318 wall, 1.030000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.54983651472668471, 0.45016348527331529, 0.078605521715081242, -0.12499713538090444, -0.18864079509611095, 2.5763461546180975, 4.7943737944422766, 4.7735756005045982, -0.0059323431803052287, 15.16111053512865, 12.386645024418343, -1.2755195653281191] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 3.1e-05 1 -1.21002e+00 1.016e+03 1.016e+03 1.0e+00 1.2e-02 2.4e+00 1.0e+00 2 -5.06511e+01 1.015e+03 1.015e+03 1.0e+00 1.7e-03 3.4e+00 6.7e+00 3 -9.94494e+01 1.015e+03 1.015e+03 1.0e+00 2.1e-03 3.4e+00 2.0e+01 4 -1.23302e+02 1.014e+03 1.014e+03 1.0e+00 5.4e-04 3.4e+00 2.8e+01 5 -1.30828e+02 1.014e+03 1.014e+03 1.0e+00 2.8e-04 3.5e+00 3.1e+01 6 -1.48890e+02 1.014e+03 1.014e+03 1.0e+00 2.2e-04 3.5e+00 4.4e+01 7 -1.57861e+02 1.014e+03 1.014e+03 1.0e+00 3.8e-03 3.5e+00 5.9e+01 8 -1.63572e+02 1.014e+03 1.014e+03 1.0e+00 2.5e-04 4.8e+00 9.2e+01 9 -2.74392e+02 1.014e+03 1.014e+03 1.0e+00 1.3e-04 4.8e+00 1.7e+02 10 -9.65801e+02 1.014e+03 1.014e+03 1.0e+00 1.6e-04 4.8e+00 3.5e+02 11 -1.63384e+03 1.013e+03 1.013e+03 1.0e+00 1.5e-04 4.8e+00 5.0e+02 12 -1.66197e+03 1.013e+03 1.013e+03 1.0e+00 3.2e-03 4.8e+00 5.1e+02 13 -1.92478e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-03 5.9e+00 6.8e+02 14 -2.32852e+03 1.013e+03 1.013e+03 1.0e+00 3.9e-05 5.9e+00 7.6e+02 15 -2.56667e+03 1.013e+03 1.013e+03 1.0e+00 1.2e-05 5.9e+00 8.0e+02 16 -2.56666e+03 1.013e+03 1.013e+03 1.0e+00 6.9e-08 5.9e+00 8.1e+02 17 -2.56666e+03 1.013e+03 1.013e+03 1.0e+00 3.7e-07 5.9e+00 8.1e+02 18 -2.56666e+03 1.013e+03 1.013e+03 1.0e+00 2.7e-11 6.8e+00 9.3e+02 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.8e+00 arnorm = 1.8e-07 itn = 18 r2norm = 1.0e+03 acond = 9.3e+02 xnorm = 5.9e+03 RUsage is: 4637476 Finding optimal step size... Finished opt2. Tderiv 2.422550 wall, 2.430000 cpu Topt 3.927190 wall, 3.910000 cpu Tstep 1.053166 wall, 1.050000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.56372195011333615, 0.43627804988666385, 0.082248242143012837, -0.1238170973701706, -0.20361484260271379, 2.6694959882482854, 4.8517225866851694, 4.8183259340269116, -0.0093324253881833224, 15.432697016619912, 12.368983165948226, -1.2957444408229368] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 3.1e-05 1 -1.16934e+00 1.016e+03 1.016e+03 1.0e+00 1.2e-02 2.4e+00 1.0e+00 2 -5.10009e+01 1.015e+03 1.015e+03 1.0e+00 1.6e-03 3.4e+00 6.8e+00 3 -9.95545e+01 1.015e+03 1.015e+03 1.0e+00 2.1e-03 3.4e+00 2.0e+01 4 -1.24653e+02 1.014e+03 1.014e+03 1.0e+00 5.5e-04 3.4e+00 2.9e+01 5 -1.31743e+02 1.014e+03 1.014e+03 1.0e+00 2.8e-04 3.5e+00 3.2e+01 6 -1.49392e+02 1.014e+03 1.014e+03 1.0e+00 2.1e-04 3.5e+00 4.6e+01 7 -1.64728e+02 1.014e+03 1.014e+03 1.0e+00 3.9e-03 3.5e+00 6.6e+01 8 -1.71065e+02 1.014e+03 1.014e+03 1.0e+00 2.9e-04 4.8e+00 1.0e+02 9 -2.74441e+02 1.014e+03 1.014e+03 1.0e+00 1.1e-04 4.8e+00 1.6e+02 10 -9.15892e+02 1.014e+03 1.014e+03 1.0e+00 1.4e-04 4.8e+00 3.4e+02 11 -1.70054e+03 1.013e+03 1.013e+03 1.0e+00 1.5e-04 4.8e+00 5.2e+02 12 -1.70624e+03 1.013e+03 1.013e+03 1.0e+00 1.5e-03 4.8e+00 5.3e+02 13 -2.09769e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-03 5.9e+00 7.3e+02 14 -2.47342e+03 1.013e+03 1.013e+03 1.0e+00 3.8e-05 5.9e+00 8.0e+02 15 -2.74342e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-04 5.9e+00 8.5e+02 16 -2.75405e+03 1.013e+03 1.013e+03 1.0e+00 2.1e-07 5.9e+00 8.6e+02 17 -2.75405e+03 1.013e+03 1.013e+03 1.0e+00 8.7e-07 6.0e+00 8.6e+02 18 -2.75405e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-10 6.8e+00 9.9e+02 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.8e+00 arnorm = 8.0e-07 itn = 18 r2norm = 1.0e+03 acond = 9.9e+02 xnorm = 6.2e+03 RUsage is: 4754044 Finding optimal step size... Finished opt2. Tderiv 2.429710 wall, 2.420000 cpu Topt 4.149118 wall, 4.140000 cpu Tstep 1.045715 wall, 1.040000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.5773911978097428, 0.4226088021902572, 0.085878238877373475, -0.12239411819964391, -0.21983620965024372, 2.7660490972070022, 4.9081771206127209, 4.8610286962460085, -0.012660171467389791, 15.712274508710475, 12.339973844227915, -1.3138377217613364] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 3.1e-05 1 -1.13767e+00 1.016e+03 1.016e+03 1.0e+00 1.3e-02 2.4e+00 1.0e+00 2 -5.11643e+01 1.015e+03 1.015e+03 1.0e+00 1.6e-03 3.4e+00 6.9e+00 3 -9.92204e+01 1.014e+03 1.014e+03 1.0e+00 2.0e-03 3.4e+00 2.0e+01 4 -1.25188e+02 1.014e+03 1.014e+03 1.0e+00 5.6e-04 3.4e+00 2.9e+01 5 -1.31835e+02 1.014e+03 1.014e+03 1.0e+00 2.8e-04 3.5e+00 3.2e+01 6 -1.48565e+02 1.014e+03 1.014e+03 1.0e+00 2.0e-04 3.5e+00 4.7e+01 7 -1.62887e+02 1.014e+03 1.014e+03 1.0e+00 5.2e-03 3.5e+00 6.2e+01 8 -1.99420e+02 1.014e+03 1.014e+03 1.0e+00 3.3e-04 4.8e+00 1.2e+02 9 -2.76211e+02 1.014e+03 1.014e+03 1.0e+00 1.0e-04 4.8e+00 1.6e+02 10 -8.61447e+02 1.014e+03 1.014e+03 1.0e+00 1.3e-04 4.8e+00 3.3e+02 11 -1.74542e+03 1.013e+03 1.013e+03 1.0e+00 1.4e-04 4.8e+00 5.4e+02 12 -1.74916e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-03 4.9e+00 5.4e+02 13 -1.85330e+03 1.013e+03 1.013e+03 1.0e+00 7.4e-04 5.9e+00 6.9e+02 14 -2.61402e+03 1.013e+03 1.013e+03 1.0e+00 3.6e-05 5.9e+00 8.4e+02 15 -2.92794e+03 1.013e+03 1.013e+03 1.0e+00 9.4e-06 5.9e+00 9.1e+02 16 -2.92792e+03 1.013e+03 1.013e+03 1.0e+00 6.0e-07 5.9e+00 9.1e+02 17 -2.92792e+03 1.013e+03 1.013e+03 1.0e+00 2.7e-06 6.0e+00 9.1e+02 18 -2.92792e+03 1.013e+03 1.013e+03 1.0e+00 3.7e-11 6.8e+00 1.0e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.8e+00 arnorm = 2.5e-07 itn = 18 r2norm = 1.0e+03 acond = 1.0e+03 xnorm = 6.4e+03 RUsage is: 4864404 Finding optimal step size... Finished opt2. Tderiv 2.419489 wall, 2.410000 cpu Topt 4.147621 wall, 4.140000 cpu Tstep 1.052497 wall, 1.040000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.59076026064184772, 0.40923973935815228, 0.089495232407982364, -0.12072089967540731, -0.2373128206590347, 2.8655592772806671, 4.9634857512531587, 4.9014961709026243, -0.015877837998161497, 15.998839216168868, 12.299672917356547, -1.3294725526756863] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 3.1e-05 1 -1.11813e+00 1.016e+03 1.016e+03 1.0e+00 1.3e-02 2.4e+00 1.0e+00 2 -5.10688e+01 1.015e+03 1.015e+03 1.0e+00 1.6e-03 3.4e+00 6.9e+00 3 -9.83462e+01 1.014e+03 1.014e+03 1.0e+00 2.0e-03 3.4e+00 2.0e+01 4 -1.24721e+02 1.014e+03 1.014e+03 1.0e+00 5.7e-04 3.4e+00 2.9e+01 5 -1.30932e+02 1.014e+03 1.014e+03 1.0e+00 2.9e-04 3.5e+00 3.2e+01 6 -1.46163e+02 1.014e+03 1.014e+03 1.0e+00 2.0e-04 3.5e+00 4.7e+01 7 -1.87785e+02 1.014e+03 1.014e+03 1.0e+00 7.5e-03 3.5e+00 7.6e+01 8 -2.69418e+02 1.014e+03 1.014e+03 1.0e+00 1.0e-04 4.8e+00 1.6e+02 9 -3.03836e+02 1.014e+03 1.014e+03 1.0e+00 2.1e-04 4.8e+00 1.8e+02 10 -8.09059e+02 1.014e+03 1.014e+03 1.0e+00 1.1e-04 4.8e+00 3.2e+02 11 -1.76596e+03 1.013e+03 1.013e+03 1.0e+00 1.4e-04 4.8e+00 5.6e+02 12 -1.76716e+03 1.013e+03 1.013e+03 1.0e+00 5.8e-04 4.9e+00 5.6e+02 13 -2.72943e+03 1.013e+03 1.013e+03 1.0e+00 2.4e-04 5.9e+00 8.8e+02 14 -2.73847e+03 1.013e+03 1.013e+03 1.0e+00 3.4e-05 5.9e+00 8.9e+02 15 -3.06577e+03 1.013e+03 1.013e+03 1.0e+00 1.0e-04 5.9e+00 9.5e+02 16 -3.07683e+03 1.013e+03 1.013e+03 1.0e+00 7.8e-07 5.9e+00 9.6e+02 17 -3.07683e+03 1.013e+03 1.013e+03 1.0e+00 6.7e-07 6.4e+00 1.0e+03 18 -3.07683e+03 1.013e+03 1.013e+03 1.0e+00 1.3e-11 6.8e+00 1.1e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.8e+00 arnorm = 8.9e-08 itn = 18 r2norm = 1.0e+03 acond = 1.1e+03 xnorm = 6.6e+03 RUsage is: 4976772 Finding optimal step size... Finished opt2. Tderiv 2.422556 wall, 2.410000 cpu Topt 3.968132 wall, 3.960000 cpu Tstep 1.055761 wall, 1.050000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.60373911287484072, 0.39626088712515922, 0.093097853883650536, -0.11879336918389, -0.25602115226052602, 2.9674241798608429, 5.0173612057058818, 4.9395629618140653, -0.018946313980299639, 16.291063555437081, 12.248652168162792, -1.34236923047927] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 3.2e-05 1 -1.11203e+00 1.016e+03 1.016e+03 1.0e+00 1.3e-02 2.4e+00 1.0e+00 2 -5.06822e+01 1.015e+03 1.015e+03 1.0e+00 1.6e-03 3.4e+00 6.9e+00 3 -9.69045e+01 1.014e+03 1.014e+03 1.0e+00 2.0e-03 3.4e+00 2.0e+01 4 -1.23195e+02 1.014e+03 1.014e+03 1.0e+00 5.9e-04 3.4e+00 2.9e+01 5 -1.28985e+02 1.014e+03 1.014e+03 1.0e+00 2.9e-04 3.5e+00 3.2e+01 6 -1.42256e+02 1.014e+03 1.014e+03 1.0e+00 2.1e-04 3.5e+00 4.7e+01 7 -2.10882e+02 1.014e+03 1.014e+03 1.0e+00 1.7e-03 3.5e+00 8.3e+01 8 -2.12823e+02 1.014e+03 1.014e+03 1.0e+00 3.6e-04 4.7e+00 1.2e+02 9 -2.80258e+02 1.014e+03 1.014e+03 1.0e+00 8.6e-05 4.8e+00 1.6e+02 10 -7.61285e+02 1.014e+03 1.014e+03 1.0e+00 9.5e-05 4.8e+00 3.0e+02 11 -1.76144e+03 1.013e+03 1.013e+03 1.0e+00 1.3e-04 4.8e+00 5.7e+02 12 -1.94303e+03 1.013e+03 1.013e+03 1.0e+00 4.5e-03 4.8e+00 6.1e+02 13 -2.05075e+03 1.013e+03 1.013e+03 1.0e+00 1.0e-03 5.9e+00 7.6e+02 14 -2.83715e+03 1.013e+03 1.013e+03 1.0e+00 3.1e-05 5.9e+00 9.3e+02 15 -3.11815e+03 1.013e+03 1.013e+03 1.0e+00 2.4e-04 5.9e+00 9.8e+02 16 -3.19111e+03 1.013e+03 1.013e+03 1.0e+00 1.0e-06 5.9e+00 1.0e+03 17 -3.19111e+03 1.013e+03 1.013e+03 1.0e+00 8.6e-07 5.9e+00 1.0e+03 18 -3.19111e+03 1.013e+03 1.013e+03 1.0e+00 4.3e-10 6.8e+00 1.2e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.8e+00 arnorm = 3.0e-06 itn = 18 r2norm = 1.0e+03 acond = 1.2e+03 xnorm = 6.7e+03 RUsage is: 5019792 Finding optimal step size... Finished opt2. Tderiv 2.423697 wall, 2.420000 cpu Topt 3.561325 wall, 3.550000 cpu Tstep 1.053892 wall, 1.050000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.61623743376330975, 0.38376256623669019, 0.096683896471692607, -0.11661251816677444, -0.27590746220164458, 3.0709029803463297, 5.0695010113632968, 4.975101772028145, -0.021826514675813077, 16.587336650632182, 12.188054951764846, -1.3523338651018624] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 3.2e-05 1 -1.12076e+00 1.016e+03 1.016e+03 1.0e+00 1.4e-02 2.4e+00 1.0e+00 2 -4.99872e+01 1.015e+03 1.015e+03 1.0e+00 1.6e-03 3.4e+00 6.8e+00 3 -9.48931e+01 1.014e+03 1.014e+03 1.0e+00 2.0e-03 3.4e+00 2.0e+01 4 -1.20611e+02 1.014e+03 1.014e+03 1.0e+00 6.1e-04 3.4e+00 2.9e+01 5 -1.26001e+02 1.014e+03 1.014e+03 1.0e+00 3.0e-04 3.5e+00 3.2e+01 6 -1.37128e+02 1.014e+03 1.014e+03 1.0e+00 2.4e-04 3.5e+00 4.7e+01 7 -1.75623e+02 1.014e+03 1.014e+03 1.0e+00 2.0e-03 3.5e+00 6.7e+01 8 -1.78292e+02 1.014e+03 1.014e+03 1.0e+00 3.0e-04 4.8e+00 9.4e+01 9 -2.82811e+02 1.014e+03 1.014e+03 1.0e+00 8.0e-05 4.8e+00 1.6e+02 10 -7.18774e+02 1.014e+03 1.014e+03 1.0e+00 8.3e-05 4.8e+00 2.9e+02 11 -1.73035e+03 1.013e+03 1.013e+03 1.0e+00 1.3e-04 4.8e+00 5.8e+02 12 -1.73111e+03 1.013e+03 1.013e+03 1.0e+00 4.3e-04 4.9e+00 5.9e+02 13 -1.77852e+03 1.013e+03 1.013e+03 1.0e+00 4.6e-04 5.9e+00 7.2e+02 14 -2.90040e+03 1.013e+03 1.013e+03 1.0e+00 2.9e-05 5.9e+00 9.6e+02 15 -3.24448e+03 1.013e+03 1.013e+03 1.0e+00 1.2e-04 5.9e+00 1.0e+03 16 -3.26092e+03 1.013e+03 1.013e+03 1.0e+00 1.6e-06 5.9e+00 1.0e+03 17 -3.26092e+03 1.013e+03 1.013e+03 1.0e+00 7.1e-07 6.7e+00 1.2e+03 18 -3.26092e+03 1.013e+03 1.013e+03 1.0e+00 3.6e-10 6.8e+00 1.2e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.8e+00 arnorm = 2.5e-06 itn = 18 r2norm = 1.0e+03 acond = 1.2e+03 xnorm = 6.8e+03 RUsage is: 5203344 Finding optimal step size... Finished opt2. Tderiv 2.422185 wall, 2.410000 cpu Topt 4.085091 wall, 4.080000 cpu Tstep 1.051507 wall, 1.040000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.6281633391393413, 0.37183666086065864, 0.10025060978734793, -0.11418838066453332, -0.29687989668415266, 3.1750931355978875, 5.1195765414867704, 5.0080194199597043, -0.024480103514297184, 16.88568268401508, 12.119673001403335, -1.359292195248593] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 3.3e-05 1 -1.14694e+00 1.016e+03 1.016e+03 1.0e+00 1.4e-02 2.3e+00 1.0e+00 2 -4.89623e+01 1.015e+03 1.015e+03 1.0e+00 1.7e-03 3.4e+00 6.7e+00 3 -9.23141e+01 1.014e+03 1.014e+03 1.0e+00 2.1e-03 3.4e+00 2.0e+01 4 -1.17000e+02 1.014e+03 1.014e+03 1.0e+00 6.4e-04 3.4e+00 2.8e+01 5 -1.22014e+02 1.014e+03 1.014e+03 1.0e+00 3.1e-04 3.5e+00 3.2e+01 6 -1.31121e+02 1.014e+03 1.014e+03 1.0e+00 2.7e-04 3.5e+00 4.5e+01 7 -1.63254e+02 1.014e+03 1.014e+03 1.0e+00 8.0e-04 3.5e+00 6.2e+01 8 -1.63748e+02 1.014e+03 1.014e+03 1.0e+00 3.0e-04 4.6e+00 8.3e+01 9 -2.84474e+02 1.014e+03 1.014e+03 1.0e+00 7.6e-05 4.8e+00 1.6e+02 10 -6.80640e+02 1.014e+03 1.014e+03 1.0e+00 7.3e-05 4.8e+00 2.8e+02 11 -1.67389e+03 1.013e+03 1.013e+03 1.0e+00 1.2e-04 4.8e+00 5.8e+02 12 -1.67700e+03 1.013e+03 1.013e+03 1.0e+00 9.0e-04 4.9e+00 5.8e+02 13 -1.86206e+03 1.013e+03 1.013e+03 1.0e+00 8.3e-04 5.9e+00 7.6e+02 14 -2.92168e+03 1.013e+03 1.013e+03 1.0e+00 2.6e-05 5.9e+00 9.9e+02 15 -3.16731e+03 1.013e+03 1.013e+03 1.0e+00 2.6e-04 5.9e+00 1.0e+03 16 -3.27980e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-06 5.9e+00 1.1e+03 17 -3.27980e+03 1.013e+03 1.013e+03 1.0e+00 1.2e-06 6.3e+00 1.1e+03 18 -3.27980e+03 1.013e+03 1.013e+03 1.0e+00 1.2e-09 6.8e+00 1.2e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.8e+00 arnorm = 8.2e-06 itn = 18 r2norm = 1.0e+03 acond = 1.2e+03 xnorm = 6.7e+03 RUsage is: 5253296 Finding optimal step size... Finished opt2. Tderiv 2.414853 wall, 2.410000 cpu Topt 4.381973 wall, 4.370000 cpu Tstep 1.041068 wall, 1.030000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.63943949759449681, 0.36056050240550319, 0.10379471967792187, -0.11153893904492644, -0.31881819446027138, 3.2790454981184505, 5.1672920492414649, 5.0382998806513672, -0.026877001426996314, 17.184063594358456, 12.045814245702976, -1.3632934239692829] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 3.3e-05 1 -1.19165e+00 1.016e+03 1.016e+03 1.0e+00 1.5e-02 2.3e+00 1.0e+00 2 -4.76392e+01 1.015e+03 1.015e+03 1.0e+00 1.7e-03 3.4e+00 6.6e+00 3 -8.92550e+01 1.014e+03 1.014e+03 1.0e+00 2.1e-03 3.4e+00 1.9e+01 4 -1.12538e+02 1.014e+03 1.014e+03 1.0e+00 6.7e-04 3.4e+00 2.8e+01 5 -1.17203e+02 1.014e+03 1.014e+03 1.0e+00 3.2e-04 3.5e+00 3.1e+01 6 -1.24617e+02 1.014e+03 1.014e+03 1.0e+00 2.9e-04 3.5e+00 4.4e+01 7 -1.52426e+02 1.014e+03 1.014e+03 1.0e+00 1.9e-03 3.5e+00 5.9e+01 8 -1.54418e+02 1.014e+03 1.014e+03 1.0e+00 2.5e-04 4.8e+00 8.2e+01 9 -2.85025e+02 1.014e+03 1.014e+03 1.0e+00 7.3e-05 4.8e+00 1.6e+02 10 -6.46499e+02 1.014e+03 1.014e+03 1.0e+00 6.6e-05 4.8e+00 2.7e+02 11 -1.59726e+03 1.013e+03 1.013e+03 1.0e+00 1.7e-04 4.8e+00 5.7e+02 12 -1.59759e+03 1.013e+03 1.013e+03 1.0e+00 1.8e-04 5.3e+00 6.3e+02 13 -1.60980e+03 1.013e+03 1.013e+03 1.0e+00 1.8e-04 5.9e+00 7.0e+02 14 -2.90177e+03 1.013e+03 1.013e+03 1.0e+00 2.4e-05 5.9e+00 1.0e+03 15 -2.98041e+03 1.013e+03 1.013e+03 1.0e+00 2.2e-04 5.9e+00 1.0e+03 16 -3.24769e+03 1.013e+03 1.013e+03 1.0e+00 7.0e-06 5.9e+00 1.1e+03 17 -3.24769e+03 1.013e+03 1.013e+03 1.0e+00 2.9e-06 6.7e+00 1.2e+03 18 -3.24771e+03 1.013e+03 1.013e+03 1.0e+00 5.8e-09 6.8e+00 1.3e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.8e+00 arnorm = 4.0e-05 itn = 18 r2norm = 1.0e+03 acond = 1.3e+03 xnorm = 6.5e+03 RUsage is: 5436276 Finding optimal step size... Finished opt2. Tderiv 2.414007 wall, 2.410000 cpu Topt 4.138384 wall, 4.130000 cpu Tstep 1.266748 wall, 1.260000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.66076248891640699, 0.33923751108359307, 0.11082811724374124, -0.10584164217139826, -0.36432532718949079, 3.4846184876544677, 5.2575197994237968, 5.0937024789491065, -0.031117508831739492, 17.776939134800898, 11.892406401453419, -1.36577056794903] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 2.3e-05 1 -2.07848e-01 1.016e+03 1.016e+03 1.0e+00 6.1e-03 2.8e+00 1.0e+00 2 -8.82177e+01 1.015e+03 1.015e+03 1.0e+00 9.0e-04 3.4e+00 1.2e+01 3 -1.53126e+02 1.014e+03 1.014e+03 1.0e+00 1.1e-03 3.5e+00 3.3e+01 4 -2.02669e+02 1.014e+03 1.014e+03 1.0e+00 4.3e-04 3.5e+00 5.2e+01 5 -2.11115e+02 1.014e+03 1.014e+03 1.0e+00 1.8e-04 3.5e+00 5.9e+01 6 -2.15790e+02 1.014e+03 1.014e+03 1.0e+00 4.2e-04 3.5e+00 7.5e+01 7 -2.15786e+02 1.014e+03 1.014e+03 1.0e+00 1.4e-04 4.7e+00 1.0e+02 8 -2.71213e+02 1.014e+03 1.014e+03 1.0e+00 1.2e-04 4.9e+00 1.5e+02 9 -5.83607e+02 1.014e+03 1.014e+03 1.0e+00 3.4e-05 4.9e+00 3.2e+02 10 -1.20601e+03 1.014e+03 1.014e+03 1.0e+00 2.6e-05 4.9e+00 5.3e+02 11 -1.22649e+03 1.014e+03 1.014e+03 1.0e+00 1.6e-03 4.9e+00 5.4e+02 12 -2.87027e+03 1.013e+03 1.013e+03 1.0e+00 4.6e-05 6.0e+00 1.4e+03 13 -2.88619e+03 1.013e+03 1.013e+03 1.0e+00 6.9e-05 6.0e+00 1.4e+03 14 -5.54521e+03 1.013e+03 1.013e+03 1.0e+00 9.4e-06 6.0e+00 2.1e+03 15 -5.68969e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-03 6.0e+00 2.1e+03 16 -5.75718e+03 1.013e+03 1.013e+03 1.0e+00 1.0e-04 6.9e+00 2.5e+03 17 -6.12810e+03 1.013e+03 1.013e+03 1.0e+00 7.9e-06 6.9e+00 2.6e+03 18 -6.12956e+03 1.013e+03 1.013e+03 1.0e+00 1.3e-08 6.9e+00 2.6e+03 19 -6.12956e+03 1.013e+03 1.013e+03 1.0e+00 6.4e-09 6.9e+00 2.6e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.9e+00 arnorm = 4.5e-05 itn = 19 r2norm = 1.0e+03 acond = 2.6e+03 xnorm = 1.2e+04 RUsage is: 5564244 Finding optimal step size... Finished opt2. Tderiv 2.594338 wall, 2.590000 cpu Topt 4.249619 wall, 4.240000 cpu Tstep 1.250501 wall, 1.240000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.67849903656060584, 0.32150096343939416, 0.11773271492848938, -0.099566844309366936, -0.41224007810480789, 3.680750057487685, 5.3361315124583335, 5.1394028867777024, -0.034195026353513923, 18.35161095289963, 11.744521746622317, -1.3593195986568103] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 2.4e-05 1 -2.57876e-01 1.016e+03 1.016e+03 1.0e+00 7.1e-03 2.7e+00 1.0e+00 2 -8.07775e+01 1.015e+03 1.015e+03 1.0e+00 9.7e-04 3.4e+00 1.1e+01 3 -1.38192e+02 1.014e+03 1.014e+03 1.0e+00 1.2e-03 3.4e+00 3.1e+01 4 -1.79501e+02 1.014e+03 1.014e+03 1.0e+00 4.7e-04 3.5e+00 4.8e+01 5 -1.87161e+02 1.014e+03 1.014e+03 1.0e+00 2.1e-04 3.5e+00 5.5e+01 6 -1.90379e+02 1.014e+03 1.014e+03 1.0e+00 8.1e-04 3.5e+00 6.8e+01 7 -1.90508e+02 1.014e+03 1.014e+03 1.0e+00 1.3e-04 4.8e+00 9.5e+01 8 -2.46800e+02 1.014e+03 1.014e+03 1.0e+00 1.3e-04 4.9e+00 1.5e+02 9 -5.72735e+02 1.014e+03 1.014e+03 1.0e+00 3.3e-05 4.9e+00 3.1e+02 10 -1.10558e+03 1.013e+03 1.013e+03 1.0e+00 2.3e-05 4.9e+00 4.9e+02 11 -1.10574e+03 1.013e+03 1.013e+03 1.0e+00 1.3e-04 4.9e+00 5.0e+02 12 -2.47734e+03 1.013e+03 1.013e+03 1.0e+00 8.1e-05 6.0e+00 1.3e+03 13 -2.48883e+03 1.013e+03 1.013e+03 1.0e+00 3.7e-05 6.0e+00 1.3e+03 14 -5.04650e+03 1.013e+03 1.013e+03 1.0e+00 8.2e-06 6.0e+00 2.1e+03 15 -5.05275e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-04 6.0e+00 2.1e+03 16 -5.05339e+03 1.013e+03 1.013e+03 1.0e+00 2.1e-05 6.9e+00 2.4e+03 17 -5.52572e+03 1.013e+03 1.013e+03 1.0e+00 8.4e-06 6.9e+00 2.6e+03 18 -5.52745e+03 1.013e+03 1.013e+03 1.0e+00 3.1e-08 6.9e+00 2.6e+03 19 -5.52745e+03 1.013e+03 1.013e+03 1.0e+00 4.9e-09 6.9e+00 2.6e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.9e+00 arnorm = 3.4e-05 itn = 19 r2norm = 1.0e+03 acond = 2.6e+03 xnorm = 1.1e+04 RUsage is: 5675380 Finding optimal step size... Finished opt2. Tderiv 2.415055 wall, 2.410000 cpu Topt 4.060249 wall, 4.040000 cpu Tstep 1.259879 wall, 1.260000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.6927029747838831, 0.3072970252161169, 0.12448707240036851, -0.093055639719217029, -0.46118181300899669, 3.8620089599122625, 5.4027894328326784, 5.1769822109432466, -0.036180851708881273, 18.895377288678823, 11.623363310083123, -1.3476412596606542] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 2.6e-05 1 -3.36856e-01 1.016e+03 1.016e+03 1.0e+00 8.4e-03 2.6e+00 1.0e+00 2 -7.24131e+01 1.015e+03 1.015e+03 1.0e+00 1.1e-03 3.4e+00 1.0e+01 3 -1.22545e+02 1.014e+03 1.014e+03 1.0e+00 1.2e-03 3.4e+00 2.8e+01 4 -1.55911e+02 1.014e+03 1.014e+03 1.0e+00 5.3e-04 3.5e+00 4.3e+01 5 -1.62785e+02 1.014e+03 1.014e+03 1.0e+00 2.3e-04 3.5e+00 5.0e+01 6 -1.65690e+02 1.014e+03 1.014e+03 1.0e+00 2.0e-04 3.5e+00 6.1e+01 7 -1.76049e+02 1.014e+03 1.014e+03 1.0e+00 4.3e-03 3.5e+00 7.0e+01 8 -2.22635e+02 1.014e+03 1.014e+03 1.0e+00 1.6e-04 4.9e+00 1.4e+02 9 -5.46425e+02 1.013e+03 1.013e+03 1.0e+00 3.4e-05 4.9e+00 2.9e+02 10 -1.00113e+03 1.013e+03 1.013e+03 1.0e+00 2.1e-05 4.9e+00 4.5e+02 11 -1.32919e+03 1.013e+03 1.013e+03 1.0e+00 4.8e-03 4.9e+00 6.5e+02 12 -2.10799e+03 1.013e+03 1.013e+03 1.0e+00 1.0e-04 6.0e+00 1.2e+03 13 -2.12281e+03 1.013e+03 1.013e+03 1.0e+00 3.2e-05 6.0e+00 1.2e+03 14 -4.40514e+03 1.013e+03 1.013e+03 1.0e+00 7.8e-06 6.0e+00 2.0e+03 15 -4.40642e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-05 6.0e+00 2.0e+03 16 -4.40779e+03 1.013e+03 1.013e+03 1.0e+00 1.5e-04 6.0e+00 2.0e+03 17 -4.77177e+03 1.013e+03 1.013e+03 1.0e+00 7.8e-06 6.9e+00 2.4e+03 18 -4.77318e+03 1.013e+03 1.013e+03 1.0e+00 7.2e-08 6.9e+00 2.4e+03 19 -4.77317e+03 1.013e+03 1.013e+03 1.0e+00 2.4e-10 6.9e+00 2.4e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.9e+00 arnorm = 1.7e-06 itn = 19 r2norm = 1.0e+03 acond = 2.4e+03 xnorm = 8.9e+03 RUsage is: 5796440 Finding optimal step size... Finished opt2. Tderiv 2.424204 wall, 2.420000 cpu Topt 4.088630 wall, 4.070000 cpu Tstep 1.258098 wall, 1.260000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.70382183394059761, 0.29617816605940234, 0.13108218921826467, -0.086625090583491313, -0.51007715011185062, 4.026293909384095, 5.4583858499234434, 5.2082819213536382, -0.037268984344014752, 19.401999727626528, 11.54221236110774, -1.3344531275323062] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 2.8e-05 1 -4.43504e-01 1.016e+03 1.016e+03 1.0e+00 1.0e-02 2.5e+00 1.0e+00 2 -6.43927e+01 1.014e+03 1.014e+03 1.0e+00 1.2e-03 3.4e+00 9.3e+00 3 -1.08166e+02 1.014e+03 1.014e+03 1.0e+00 1.3e-03 3.4e+00 2.5e+01 4 -1.34820e+02 1.014e+03 1.014e+03 1.0e+00 5.9e-04 3.5e+00 3.8e+01 5 -1.40943e+02 1.014e+03 1.014e+03 1.0e+00 2.6e-04 3.5e+00 4.5e+01 6 -1.43766e+02 1.014e+03 1.014e+03 1.0e+00 2.2e-04 3.5e+00 5.5e+01 7 -1.88835e+02 1.014e+03 1.014e+03 1.0e+00 4.9e-03 3.5e+00 8.6e+01 8 -2.01436e+02 1.014e+03 1.014e+03 1.0e+00 1.9e-04 4.9e+00 1.3e+02 9 -5.12507e+02 1.013e+03 1.013e+03 1.0e+00 3.5e-05 4.9e+00 2.7e+02 10 -9.02170e+02 1.013e+03 1.013e+03 1.0e+00 2.0e-05 4.9e+00 4.1e+02 11 -1.80499e+03 1.013e+03 1.013e+03 1.0e+00 1.4e-03 4.9e+00 8.9e+02 12 -1.82634e+03 1.013e+03 1.013e+03 1.0e+00 2.8e-05 5.9e+00 1.1e+03 13 -2.41158e+03 1.013e+03 1.013e+03 1.0e+00 5.2e-04 5.9e+00 1.3e+03 14 -3.77766e+03 1.013e+03 1.013e+03 1.0e+00 1.0e-05 6.0e+00 1.8e+03 15 -3.77856e+03 1.013e+03 1.013e+03 1.0e+00 6.3e-06 6.0e+00 1.8e+03 16 -3.94460e+03 1.013e+03 1.013e+03 1.0e+00 9.5e-04 6.0e+00 1.9e+03 17 -4.04194e+03 1.013e+03 1.013e+03 1.0e+00 1.7e-05 6.9e+00 2.2e+03 18 -4.04896e+03 1.013e+03 1.013e+03 1.0e+00 2.8e-07 6.9e+00 2.2e+03 19 -4.04898e+03 1.013e+03 1.013e+03 1.0e+00 2.0e-10 6.9e+00 2.2e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 6.9e+00 arnorm = 1.4e-06 itn = 19 r2norm = 1.0e+03 acond = 2.2e+03 xnorm = 7.4e+03 RUsage is: 5919096 Finding optimal step size... Finished opt2. Tderiv 2.425432 wall, 2.420000 cpu Topt 4.126126 wall, 4.100000 cpu Tstep 1.461156 wall, 1.460000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.7222881942532221, 0.27771180574677795, 0.1439646742741674, -0.074327921880983541, -0.60668900109473345, 4.3229052970219133, 5.550903740573375, 5.2617388846232656, -0.038126828293531402, 20.341517376506246, 11.467172054594407, -1.310135330422006] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 2.0e-05 1 1.04652e-02 1.016e+03 1.016e+03 1.0e+00 4.6e-03 2.9e+00 1.0e+00 2 -1.11747e+02 1.014e+03 1.014e+03 1.0e+00 6.6e-04 3.5e+00 1.6e+01 3 -1.78159e+02 1.014e+03 1.014e+03 1.0e+00 7.2e-04 3.5e+00 4.2e+01 4 -2.19693e+02 1.014e+03 1.014e+03 1.0e+00 3.5e-04 3.5e+00 6.6e+01 5 -2.31660e+02 1.014e+03 1.014e+03 1.0e+00 1.6e-04 3.5e+00 7.9e+01 6 -2.31979e+02 1.014e+03 1.014e+03 1.0e+00 2.0e-03 3.5e+00 8.1e+01 7 -2.36880e+02 1.014e+03 1.014e+03 1.0e+00 8.3e-05 4.9e+00 1.3e+02 8 -3.67409e+02 1.014e+03 1.014e+03 1.0e+00 1.2e-04 4.9e+00 2.5e+02 9 -9.98949e+02 1.013e+03 1.013e+03 1.0e+00 1.7e-05 4.9e+00 5.0e+02 10 -1.53169e+03 1.013e+03 1.013e+03 1.0e+00 2.6e-03 4.9e+00 7.4e+02 11 -1.64781e+03 1.013e+03 1.013e+03 1.0e+00 7.1e-06 6.0e+00 9.5e+02 12 -3.13755e+03 1.013e+03 1.013e+03 1.0e+00 1.3e-05 6.0e+00 2.1e+03 13 -3.14719e+03 1.013e+03 1.013e+03 1.0e+00 2.5e-05 6.0e+00 2.1e+03 14 -6.09785e+03 1.013e+03 1.013e+03 1.0e+00 1.0e-04 6.0e+00 3.3e+03 15 -6.09829e+03 1.013e+03 1.013e+03 1.0e+00 2.0e-06 6.9e+00 3.9e+03 16 -6.09875e+03 1.013e+03 1.013e+03 1.0e+00 2.0e-06 6.9e+00 3.9e+03 17 -6.27899e+03 1.013e+03 1.013e+03 1.0e+00 1.8e-05 6.9e+00 4.0e+03 18 -6.39126e+03 1.013e+03 1.013e+03 1.0e+00 9.0e-07 6.9e+00 4.2e+03 19 -6.39126e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-06 7.2e+00 4.4e+03 20 -6.39135e+03 1.013e+03 1.013e+03 1.0e+00 9.0e-10 7.7e+00 4.6e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 7.7e+00 arnorm = 7.0e-06 itn = 20 r2norm = 1.0e+03 acond = 4.6e+03 xnorm = 1.1e+04 RUsage is: 6042508 Finding optimal step size... Finished opt2. Tderiv 2.417754 wall, 2.410000 cpu Topt 4.442196 wall, 4.430000 cpu Tstep 1.465725 wall, 1.460000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.73155395649939603, 0.26844604350060391, 0.15627297585971117, -0.063750317684598518, -0.69995988751977078, 4.5662628042130846, 5.6139179354516999, 5.3027657789361538, -0.03736016047006642, 21.148958796203221, 11.567596633713947, -1.2997535722994447] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.016e+03 1.016e+03 1.0e+00 2.3e-05 1 -6.32056e-02 1.016e+03 1.016e+03 1.0e+00 6.0e-03 2.8e+00 1.0e+00 2 -9.09992e+01 1.014e+03 1.014e+03 1.0e+00 7.8e-04 3.5e+00 1.4e+01 3 -1.43432e+02 1.014e+03 1.014e+03 1.0e+00 8.2e-04 3.5e+00 3.5e+01 4 -1.72258e+02 1.014e+03 1.014e+03 1.0e+00 4.1e-04 3.5e+00 5.4e+01 5 -1.82463e+02 1.014e+03 1.014e+03 1.0e+00 1.9e-04 3.5e+00 6.6e+01 6 -1.87319e+02 1.014e+03 1.014e+03 1.0e+00 2.3e-03 3.5e+00 7.6e+01 7 -1.87898e+02 1.014e+03 1.014e+03 1.0e+00 1.0e-04 4.9e+00 1.1e+02 8 -3.29979e+02 1.013e+03 1.013e+03 1.0e+00 1.6e-04 4.9e+00 2.3e+02 9 -8.78855e+02 1.013e+03 1.013e+03 1.0e+00 1.8e-05 4.9e+00 4.3e+02 10 -1.39476e+03 1.013e+03 1.013e+03 1.0e+00 9.2e-05 4.9e+00 6.7e+02 11 -1.39486e+03 1.013e+03 1.013e+03 1.0e+00 7.3e-06 6.0e+00 8.1e+02 12 -2.55157e+03 1.013e+03 1.013e+03 1.0e+00 1.6e-04 6.0e+00 1.8e+03 13 -2.72563e+03 1.013e+03 1.013e+03 1.0e+00 1.2e-05 6.0e+00 1.9e+03 14 -4.70808e+03 1.013e+03 1.013e+03 1.0e+00 9.8e-05 6.0e+00 2.8e+03 15 -4.70849e+03 1.013e+03 1.013e+03 1.0e+00 1.2e-05 6.9e+00 3.2e+03 16 -4.71157e+03 1.013e+03 1.013e+03 1.0e+00 8.5e-07 6.9e+00 3.2e+03 17 -4.71893e+03 1.013e+03 1.013e+03 1.0e+00 5.4e-06 6.9e+00 3.3e+03 18 -4.83399e+03 1.013e+03 1.013e+03 1.0e+00 4.5e-07 6.9e+00 3.5e+03 19 -4.83399e+03 1.013e+03 1.013e+03 1.0e+00 4.4e-07 7.3e+00 3.7e+03 20 -4.83406e+03 1.013e+03 1.013e+03 1.0e+00 8.6e-10 7.7e+00 3.9e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 7.7e+00 arnorm = 6.7e-06 itn = 20 r2norm = 1.0e+03 acond = 3.9e+03 xnorm = 8.4e+03 RUsage is: 6097332 Finding optimal step size... Finished opt2. Tderiv 2.441623 wall, 2.430000 cpu Topt 3.726732 wall, 3.720000 cpu Tstep 1.668592 wall, 1.660000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.74130240532317127, 0.25869759467682879, 0.18000596892946125, -0.045651191889620024, -0.87989089994007919, 4.986025753519181, 5.7050629379891946, 5.3719637604415871, -0.034691543793898411, 22.559807048225487, 12.027973957407223, -1.309159044182612] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.015e+03 1.015e+03 1.0e+00 1.9e-05 1 1.55694e-01 1.015e+03 1.015e+03 1.0e+00 2.8e-03 3.1e+00 1.0e+00 2 -1.53509e+02 1.014e+03 1.014e+03 1.0e+00 4.5e-04 3.5e+00 2.3e+01 3 -2.33508e+02 1.014e+03 1.014e+03 1.0e+00 4.3e-04 3.5e+00 5.8e+01 4 -2.72687e+02 1.013e+03 1.013e+03 1.0e+00 2.3e-04 3.5e+00 9.0e+01 5 -2.92959e+02 1.013e+03 1.013e+03 1.0e+00 1.6e-04 3.5e+00 1.1e+02 6 -2.92986e+02 1.013e+03 1.013e+03 1.0e+00 1.1e-04 4.4e+00 1.4e+02 7 -3.05603e+02 1.013e+03 1.013e+03 1.0e+00 5.6e-05 4.9e+00 1.9e+02 8 -7.29395e+02 1.013e+03 1.013e+03 1.0e+00 1.1e-04 4.9e+00 4.9e+02 9 -1.70273e+03 1.013e+03 1.013e+03 1.0e+00 9.8e-06 4.9e+00 8.1e+02 10 -1.70275e+03 1.013e+03 1.013e+03 1.0e+00 2.1e-05 5.1e+00 8.4e+02 11 -2.56832e+03 1.013e+03 1.013e+03 1.0e+00 3.3e-06 6.0e+00 1.5e+03 12 -5.82222e+03 1.013e+03 1.013e+03 1.0e+00 5.1e-06 6.0e+00 3.9e+03 13 -5.82868e+03 1.013e+03 1.013e+03 1.0e+00 1.1e-04 6.0e+00 3.9e+03 14 -5.83041e+03 1.013e+03 1.013e+03 1.0e+00 9.7e-06 6.9e+00 4.5e+03 15 -7.34678e+03 1.013e+03 1.013e+03 1.0e+00 2.8e-05 6.9e+00 5.6e+03 16 -7.44254e+03 1.013e+03 1.013e+03 1.0e+00 1.6e-07 6.9e+00 5.6e+03 17 -7.44213e+03 1.013e+03 1.013e+03 1.0e+00 7.1e-07 6.9e+00 5.6e+03 18 -7.44213e+03 1.013e+03 1.013e+03 1.0e+00 3.7e-07 7.5e+00 6.1e+03 19 -7.38853e+03 1.013e+03 1.013e+03 1.0e+00 8.8e-07 7.7e+00 6.8e+03 20 -7.38276e+03 1.013e+03 1.013e+03 1.0e+00 5.2e-09 7.7e+00 6.8e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 7.7e+00 arnorm = 4.1e-05 itn = 20 r2norm = 1.0e+03 acond = 6.8e+03 xnorm = 1.2e+04 RUsage is: 6238868 Finding optimal step size... Finished opt2. Tderiv 2.600907 wall, 2.600000 cpu Topt 4.013309 wall, 3.990000 cpu Tstep 1.895085 wall, 1.890000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.70705250184407342, 0.29294749815592663, 0.22472413638053329, -0.018420013896597025, -1.2180760187131452, 5.6774261365020076, 5.8042306059800906, 5.4805889637286338, -0.028987107742270139, 24.760888448821472, 13.739206346390214, -1.4493929292962795] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.014e+03 1.014e+03 1.0e+00 1.9e-05 1 3.17959e-01 1.014e+03 1.014e+03 1.0e+00 1.2e-03 3.4e+00 1.0e+00 2 -2.32051e+02 1.013e+03 1.013e+03 1.0e+00 2.3e-04 3.5e+00 3.8e+01 3 -3.64972e+02 1.013e+03 1.013e+03 1.0e+00 2.2e-04 3.5e+00 1.0e+02 4 -4.15536e+02 1.013e+03 1.013e+03 1.0e+00 1.2e-04 3.5e+00 1.5e+02 5 -4.38825e+02 1.013e+03 1.013e+03 1.0e+00 6.1e-03 3.5e+00 1.7e+02 6 -4.64537e+02 1.013e+03 1.013e+03 1.0e+00 4.1e-05 4.9e+00 2.8e+02 7 -5.12448e+02 1.013e+03 1.013e+03 1.0e+00 4.5e-05 4.9e+00 3.4e+02 8 -2.29141e+03 1.013e+03 1.013e+03 1.0e+00 6.1e-05 4.9e+00 1.1e+03 9 -2.90992e+03 1.012e+03 1.012e+03 1.0e+00 4.6e-03 4.9e+00 1.3e+03 10 -3.04713e+03 1.012e+03 1.012e+03 1.0e+00 4.3e-06 6.0e+00 1.6e+03 11 -4.51106e+03 1.012e+03 1.012e+03 1.0e+00 2.1e-06 6.0e+00 2.5e+03 12 -5.47142e+03 1.012e+03 1.012e+03 1.0e+00 6.6e-05 6.0e+00 3.4e+03 13 -5.47728e+03 1.012e+03 1.012e+03 1.0e+00 1.9e-04 6.1e+00 3.5e+03 14 -9.86103e+03 1.012e+03 1.012e+03 1.0e+00 1.3e-06 6.9e+00 7.0e+03 15 -1.01060e+04 1.012e+03 1.012e+03 1.0e+00 1.1e-05 6.9e+00 7.8e+03 16 -1.01386e+04 1.012e+03 1.012e+03 1.0e+00 7.1e-06 6.9e+00 7.9e+03 17 -1.01387e+04 1.012e+03 1.012e+03 1.0e+00 5.3e-07 7.7e+00 8.8e+03 18 -1.01305e+04 1.012e+03 1.012e+03 1.0e+00 2.1e-06 7.7e+00 8.9e+03 19 -9.90458e+03 1.012e+03 1.012e+03 1.0e+00 1.5e-07 7.7e+00 9.8e+03 20 -9.90453e+03 1.012e+03 1.012e+03 1.0e+00 5.9e-06 7.7e+00 9.8e+03 21 -9.90442e+03 1.012e+03 1.012e+03 1.0e+00 1.2e-09 8.5e+00 1.1e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 8.5e+00 arnorm = 1.0e-05 itn = 21 r2norm = 1.0e+03 acond = 1.1e+04 xnorm = 1.7e+04 RUsage is: 6369700 Finding optimal step size... Finished opt2. Tderiv 2.454698 wall, 2.440000 cpu Topt 3.849378 wall, 3.840000 cpu Tstep 1.890206 wall, 1.880000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.6719303347909853, 0.3280696652090147, 0.26722979432968808, 0.0037655266434649011, -1.4946501658948947, 6.2523193364590446, 5.8402625387896041, 5.568194357476794, -0.02730285082281245, 25.996274644866357, 16.126712272649183, -1.7178231836284479] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.014e+03 1.014e+03 1.0e+00 2.2e-05 1 3.74514e-01 1.014e+03 1.014e+03 1.0e+00 1.1e-03 3.4e+00 1.0e+00 2 -1.75896e+02 1.013e+03 1.013e+03 1.0e+00 2.4e-04 3.5e+00 3.2e+01 3 -2.90369e+02 1.013e+03 1.013e+03 1.0e+00 2.1e-04 3.5e+00 9.2e+01 4 -3.25265e+02 1.013e+03 1.013e+03 1.0e+00 1.3e-04 3.5e+00 1.3e+02 5 -3.36611e+02 1.013e+03 1.013e+03 1.0e+00 4.9e-03 3.5e+00 1.4e+02 6 -3.82937e+02 1.013e+03 1.013e+03 1.0e+00 4.6e-05 4.9e+00 2.5e+02 7 -4.69207e+02 1.013e+03 1.013e+03 1.0e+00 7.6e-05 4.9e+00 3.3e+02 8 -2.54533e+03 1.012e+03 1.012e+03 1.0e+00 5.1e-05 4.9e+00 1.1e+03 9 -2.87780e+03 1.012e+03 1.012e+03 1.0e+00 4.7e-04 4.9e+00 1.1e+03 10 -2.87890e+03 1.012e+03 1.012e+03 1.0e+00 6.0e-06 6.0e+00 1.4e+03 11 -4.53247e+03 1.012e+03 1.012e+03 1.0e+00 3.3e-06 6.0e+00 2.2e+03 12 -7.21144e+03 1.012e+03 1.012e+03 1.0e+00 4.9e-05 6.0e+00 3.9e+03 13 -7.23589e+03 1.012e+03 1.012e+03 1.0e+00 4.9e-04 6.0e+00 3.9e+03 14 -7.44762e+03 1.012e+03 1.012e+03 1.0e+00 2.5e-06 6.9e+00 4.6e+03 15 -8.55035e+03 1.012e+03 1.012e+03 1.0e+00 2.9e-06 6.9e+00 5.8e+03 16 -8.55150e+03 1.012e+03 1.012e+03 1.0e+00 1.3e-06 6.9e+00 5.8e+03 17 -8.55131e+03 1.012e+03 1.012e+03 1.0e+00 5.7e-05 6.9e+00 5.8e+03 18 -8.38307e+03 1.012e+03 1.012e+03 1.0e+00 2.8e-06 7.7e+00 7.5e+03 19 -8.38028e+03 1.012e+03 1.012e+03 1.0e+00 1.3e-07 7.7e+00 7.6e+03 20 -8.38020e+03 1.012e+03 1.012e+03 1.0e+00 1.2e-09 7.7e+00 7.6e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 7.7e+00 arnorm = 9.6e-06 itn = 20 r2norm = 1.0e+03 acond = 7.6e+03 xnorm = 1.5e+04 RUsage is: 6518888 Finding optimal step size... Finished opt2. Tderiv 2.631065 wall, 2.620000 cpu Topt 3.852092 wall, 3.840000 cpu Tstep 1.898406 wall, 1.900000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.64414122652861394, 0.35585877347138606, 0.30694345592250744, 0.028803472711404092, -1.747132082520787, 6.8797072477650056, 5.8624424052368562, 5.6545946723601226, -0.030776342129440262, 26.804942273872058, 18.837840080245574, -1.9925787494802991] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.013e+03 1.013e+03 1.0e+00 2.3e-05 1 4.40720e-01 1.013e+03 1.013e+03 1.0e+00 8.7e-04 3.4e+00 1.0e+00 2 -1.67259e+02 1.013e+03 1.013e+03 1.0e+00 2.1e-04 3.5e+00 3.5e+01 3 -2.86354e+02 1.012e+03 1.012e+03 1.0e+00 1.7e-04 3.5e+00 1.0e+02 4 -3.18620e+02 1.012e+03 1.012e+03 1.0e+00 1.2e-04 3.5e+00 1.4e+02 5 -3.20247e+02 1.012e+03 1.012e+03 1.0e+00 1.8e-03 3.5e+00 1.4e+02 6 -4.03663e+02 1.012e+03 1.012e+03 1.0e+00 4.3e-05 4.9e+00 2.8e+02 7 -6.60741e+02 1.012e+03 1.012e+03 1.0e+00 1.1e-04 4.9e+00 4.6e+02 8 -3.30899e+03 1.011e+03 1.011e+03 1.0e+00 4.0e-05 4.9e+00 1.2e+03 9 -3.30965e+03 1.011e+03 1.011e+03 1.0e+00 3.2e-04 4.9e+00 1.2e+03 10 -3.59720e+03 1.011e+03 1.011e+03 1.0e+00 7.0e-06 6.0e+00 1.6e+03 11 -6.03325e+03 1.011e+03 1.011e+03 1.0e+00 3.6e-06 6.0e+00 2.4e+03 12 -7.19141e+03 1.011e+03 1.011e+03 1.0e+00 1.4e-03 6.0e+00 3.2e+03 13 -7.36454e+03 1.011e+03 1.011e+03 1.0e+00 6.8e-05 6.9e+00 3.8e+03 14 -8.37139e+03 1.011e+03 1.011e+03 1.0e+00 2.3e-06 6.9e+00 4.4e+03 15 -9.50667e+03 1.011e+03 1.011e+03 1.0e+00 1.6e-06 6.9e+00 5.6e+03 16 -9.50670e+03 1.011e+03 1.011e+03 1.0e+00 2.1e-05 6.9e+00 5.6e+03 17 -9.50828e+03 1.011e+03 1.011e+03 1.0e+00 2.5e-06 7.7e+00 6.3e+03 18 -9.47040e+03 1.011e+03 1.011e+03 1.0e+00 1.7e-07 7.7e+00 7.6e+03 19 -9.47031e+03 1.011e+03 1.011e+03 1.0e+00 1.0e-07 7.7e+00 7.7e+03 20 -9.47031e+03 1.011e+03 1.011e+03 1.0e+00 2.7e-08 8.4e+00 8.3e+03 21 -9.47030e+03 1.011e+03 1.011e+03 1.0e+00 3.6e-10 8.5e+00 8.4e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 8.5e+00 arnorm = 3.0e-06 itn = 21 r2norm = 1.0e+03 acond = 8.4e+03 xnorm = 1.7e+04 RUsage is: 6649028 Finding optimal step size... Finished opt2. Tderiv 2.461337 wall, 2.450000 cpu Topt 3.789690 wall, 3.770000 cpu Tstep 1.889223 wall, 1.890000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.60401259414262598, 0.39598740585737402, 0.34331082744873742, 0.055044531224414855, -1.9710210856459474, 7.5606410544217217, 5.8576669515236395, 5.7313234910809516, -0.039190442401446486, 27.28519884536713, 22.228866273569356, -2.3495622669419562] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.012e+03 1.012e+03 1.0e+00 2.5e-05 1 5.22570e-01 1.012e+03 1.012e+03 1.0e+00 5.5e-04 3.5e+00 1.0e+00 2 -1.48133e+02 1.012e+03 1.012e+03 1.0e+00 1.8e-04 3.5e+00 3.9e+01 3 -2.78476e+02 1.012e+03 1.012e+03 1.0e+00 1.3e-04 3.5e+00 1.2e+02 4 -3.17460e+02 1.012e+03 1.012e+03 1.0e+00 1.1e-04 3.5e+00 1.6e+02 5 -3.18466e+02 1.012e+03 1.012e+03 1.0e+00 1.2e-03 3.5e+00 1.6e+02 6 -4.50795e+02 1.012e+03 1.012e+03 1.0e+00 4.4e-05 4.9e+00 3.4e+02 7 -1.79753e+03 1.011e+03 1.011e+03 1.0e+00 1.9e-04 4.9e+00 8.9e+02 8 -4.18467e+03 1.011e+03 1.011e+03 1.0e+00 3.7e-05 4.9e+00 1.4e+03 9 -4.18497e+03 1.011e+03 1.011e+03 1.0e+00 2.1e-04 4.9e+00 1.4e+03 10 -4.54181e+03 1.011e+03 1.011e+03 1.0e+00 8.4e-06 6.0e+00 1.8e+03 11 -8.09493e+03 1.011e+03 1.011e+03 1.0e+00 3.9e-06 6.0e+00 2.7e+03 12 -9.71878e+03 1.011e+03 1.011e+03 1.0e+00 1.8e-03 6.0e+00 3.6e+03 13 -9.99706e+03 1.011e+03 1.011e+03 1.0e+00 1.9e-05 6.9e+00 4.4e+03 14 -1.00349e+04 1.011e+03 1.011e+03 1.0e+00 2.1e-06 6.9e+00 4.4e+03 15 -1.09322e+04 1.011e+03 1.011e+03 1.0e+00 1.5e-06 6.9e+00 5.6e+03 16 -1.09324e+04 1.011e+03 1.011e+03 1.0e+00 1.1e-04 6.9e+00 5.6e+03 17 -1.09716e+04 1.011e+03 1.011e+03 1.0e+00 1.7e-05 7.7e+00 7.2e+03 18 -1.09856e+04 1.011e+03 1.011e+03 1.0e+00 3.9e-08 7.7e+00 7.8e+03 19 -1.09856e+04 1.011e+03 1.011e+03 1.0e+00 5.8e-08 7.7e+00 7.8e+03 20 -1.09856e+04 1.011e+03 1.011e+03 1.0e+00 4.3e-09 8.5e+00 8.6e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 8.5e+00 arnorm = 3.6e-05 itn = 20 r2norm = 1.0e+03 acond = 8.6e+03 xnorm = 2.0e+04 RUsage is: 6852964 Finding optimal step size... Finished opt2. Tderiv 2.466706 wall, 2.460000 cpu Topt 4.305587 wall, 4.290000 cpu Tstep 1.683378 wall, 1.680000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.60479516467824879, 0.39520483532175127, 0.36003041105109435, 0.069396075869812029, -2.06870861309842, 7.936119041944548, 5.8434225824738393, 5.7657548142494166, -0.045923884988175921, 27.402410350169522, 24.326657468898432, -2.5744535658570524] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.012e+03 1.012e+03 1.0e+00 2.6e-05 1 4.58544e-01 1.012e+03 1.012e+03 1.0e+00 1.0e-03 3.4e+00 1.0e+00 2 -8.90005e+01 1.012e+03 1.012e+03 1.0e+00 3.3e-04 3.5e+00 2.2e+01 3 -1.59575e+02 1.012e+03 1.012e+03 1.0e+00 2.1e-04 3.5e+00 6.5e+01 4 -1.80428e+02 1.012e+03 1.012e+03 1.0e+00 1.9e-04 3.5e+00 9.2e+01 5 -2.62235e+02 1.012e+03 1.012e+03 1.0e+00 1.5e-03 3.5e+00 1.4e+02 6 -2.63393e+02 1.012e+03 1.012e+03 1.0e+00 7.6e-05 4.9e+00 2.0e+02 7 -2.15485e+03 1.011e+03 1.011e+03 1.0e+00 3.1e-04 4.9e+00 7.6e+02 8 -2.80150e+03 1.010e+03 1.010e+03 1.0e+00 8.0e-05 4.9e+00 8.7e+02 9 -3.08803e+03 1.010e+03 1.010e+03 1.0e+00 1.8e-04 4.9e+00 9.1e+02 10 -3.08819e+03 1.010e+03 1.010e+03 1.0e+00 1.6e-05 6.0e+00 1.1e+03 11 -5.75739e+03 1.010e+03 1.010e+03 1.0e+00 6.9e-06 6.0e+00 1.7e+03 12 -6.55239e+03 1.010e+03 1.010e+03 1.0e+00 1.2e-04 6.0e+00 2.1e+03 13 -6.83085e+03 1.010e+03 1.010e+03 1.0e+00 8.9e-04 6.0e+00 2.3e+03 14 -6.86365e+03 1.010e+03 1.010e+03 1.0e+00 3.4e-06 6.9e+00 2.6e+03 15 -7.32479e+03 1.010e+03 1.010e+03 1.0e+00 2.5e-06 6.9e+00 3.3e+03 16 -7.34555e+03 1.010e+03 1.010e+03 1.0e+00 3.9e-05 6.9e+00 3.7e+03 17 -7.34562e+03 1.010e+03 1.010e+03 1.0e+00 8.0e-05 7.1e+00 3.8e+03 18 -7.37847e+03 1.010e+03 1.010e+03 1.0e+00 2.1e-07 7.7e+00 4.7e+03 19 -7.37853e+03 1.010e+03 1.010e+03 1.0e+00 5.4e-09 7.7e+00 4.7e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 7.7e+00 arnorm = 4.2e-05 itn = 19 r2norm = 1.0e+03 acond = 4.7e+03 xnorm = 1.3e+04 RUsage is: 6982636 Finding optimal step size... Finished opt2. Tderiv 2.464115 wall, 2.450000 cpu Topt 4.157592 wall, 4.150000 cpu Tstep 2.717817 wall, 2.710000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.60886424818250451, 0.39113575181749544, 0.85180511317588414, 0.53896525271542384, -5.2140992854732344, 21.590467780167142, 5.2678889253702241, 6.7984793789668023, -0.29229611998131239, 29.798247469470045, 103.77004511463005, -10.937567205883331] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.003e+03 1.003e+03 1.0e+00 2.4e-05 1 5.66427e-01 1.003e+03 1.003e+03 1.0e+00 1.2e-04 3.5e+00 1.0e+00 2 -9.39100e+03 1.000e+03 1.000e+03 1.0e+00 3.3e-05 3.5e+00 6.9e+02 3 -1.04666e+04 9.987e+02 9.987e+02 1.0e+00 3.9e-05 3.5e+00 1.8e+03 4 -1.04666e+04 9.987e+02 9.987e+02 1.0e+00 9.0e-06 4.8e+00 2.4e+03 5 -9.51735e+03 9.984e+02 9.984e+02 1.0e+00 6.2e-06 4.9e+00 3.7e+03 6 -9.59181e+03 9.983e+02 9.983e+02 9.9e-01 7.0e-06 4.9e+00 5.3e+03 7 -9.59181e+03 9.983e+02 9.983e+02 9.9e-01 1.1e-05 5.2e+00 5.7e+03 8 -1.01302e+04 9.981e+02 9.981e+02 9.9e-01 2.4e-06 6.0e+00 9.4e+03 9 -3.04461e+05 9.922e+02 9.922e+02 9.9e-01 1.3e-03 6.0e+00 5.8e+04 10 -3.04587e+05 9.922e+02 9.922e+02 9.9e-01 1.4e-05 6.9e+00 6.7e+04 11 -1.05368e+06 9.770e+02 9.770e+02 9.7e-01 6.6e-07 6.9e+00 1.3e+05 12 -1.05368e+06 9.770e+02 9.770e+02 9.7e-01 8.7e-05 6.9e+00 1.3e+05 13 -1.22359e+06 9.756e+02 9.756e+02 9.7e-01 3.0e-06 7.7e+00 1.7e+05 14 -1.22437e+06 9.756e+02 9.756e+02 9.7e-01 6.3e-07 7.7e+00 1.7e+05 15 -1.22437e+06 9.756e+02 9.756e+02 9.7e-01 6.3e-07 8.1e+00 1.8e+05 16 -1.98551e+06 9.733e+02 9.733e+02 9.7e-01 4.9e-07 8.5e+00 2.9e+05 17 -1.99275e+06 9.733e+02 9.733e+02 9.7e-01 2.1e-03 8.5e+00 2.9e+05 18 -2.22908e+06 9.728e+02 9.728e+02 9.7e-01 8.8e-06 9.2e+00 3.3e+05 19 -3.63452e+06 9.702e+02 9.702e+02 9.7e-01 4.2e-06 9.2e+00 4.5e+05 20 -3.63484e+06 9.702e+02 9.702e+02 9.7e-01 4.1e-04 9.2e+00 4.5e+05 21 -3.70612e+06 9.701e+02 9.701e+02 9.7e-01 1.9e-07 9.8e+00 4.8e+05 22 -3.70645e+06 9.701e+02 9.701e+02 9.7e-01 1.9e-07 9.8e+00 4.8e+05 23 -3.70645e+06 9.701e+02 9.701e+02 9.7e-01 9.0e-07 9.8e+00 4.8e+05 24 -3.79026e+06 9.694e+02 9.694e+02 9.7e-01 7.6e-06 1.0e+01 6.3e+05 LSQR finished The iteration limit has been reached istop = 7 r1norm = 9.7e+02 anorm = 1.0e+01 arnorm = 7.6e-02 itn = 24 r2norm = 9.7e+02 acond = 6.3e+05 xnorm = 7.3e+06 RUsage is: 7143404 Finding optimal step size... Finished opt2. Tderiv 2.468085 wall, 2.450000 cpu Topt 4.751029 wall, 4.740000 cpu Tstep 2.814178 wall, 2.810000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.60997441065820912, 0.39002558934179082, 0.8429831768310202, 0.47283816680600765, -5.9647710736889499, 31.384326492522113, 5.1030475214049602, 6.5801100087812952, -0.22084807634478137, 9.46844585708034, 238.3023595173515, -33.311758878538328] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.963e+02 9.963e+02 1.0e+00 2.8e-05 1 6.29921e-01 9.962e+02 9.962e+02 1.0e+00 2.0e-04 3.5e+00 1.0e+00 2 -1.28753e+04 9.883e+02 9.883e+02 9.9e-01 5.2e-05 3.5e+00 6.2e+02 3 -1.39169e+04 9.858e+02 9.858e+02 9.9e-01 2.1e-05 3.5e+00 1.6e+03 4 -1.39169e+04 9.858e+02 9.858e+02 9.9e-01 1.9e-05 4.2e+00 1.9e+03 5 -1.31922e+04 9.854e+02 9.854e+02 9.9e-01 7.4e-06 4.9e+00 3.3e+03 6 -1.38935e+04 9.852e+02 9.852e+02 9.9e-01 9.2e-06 4.9e+00 4.7e+03 7 -1.38935e+04 9.852e+02 9.852e+02 9.9e-01 1.0e-05 5.4e+00 5.1e+03 8 -1.53479e+04 9.850e+02 9.850e+02 9.9e-01 2.3e-06 6.0e+00 8.4e+03 9 -8.74691e+04 9.839e+02 9.839e+02 9.9e-01 2.0e-04 6.0e+00 2.6e+04 10 -8.74730e+04 9.839e+02 9.839e+02 9.9e-01 2.6e-06 6.9e+00 3.0e+04 11 -3.00500e+05 9.800e+02 9.800e+02 9.8e-01 1.2e-05 6.9e+00 7.0e+04 12 -7.15717e+05 9.726e+02 9.726e+02 9.8e-01 3.3e-02 6.9e+00 1.1e+05 13 -8.77047e+05 9.698e+02 9.698e+02 9.7e-01 2.6e-06 7.7e+00 1.4e+05 14 -9.00050e+05 9.692e+02 9.692e+02 9.7e-01 2.4e-05 7.7e+00 1.4e+05 15 -9.10021e+05 9.690e+02 9.690e+02 9.7e-01 9.0e-03 7.7e+00 1.4e+05 16 -1.24038e+06 9.622e+02 9.622e+02 9.7e-01 2.8e-07 8.5e+00 1.9e+05 17 -2.49440e+06 9.598e+02 9.598e+02 9.6e-01 1.0e-04 8.5e+00 3.3e+05 18 -2.49441e+06 9.598e+02 9.598e+02 9.6e-01 1.8e-06 9.2e+00 3.5e+05 19 -2.50121e+06 9.598e+02 9.598e+02 9.6e-01 1.5e-07 9.2e+00 3.6e+05 20 -2.50136e+06 9.598e+02 9.598e+02 9.6e-01 7.2e-06 9.2e+00 3.6e+05 21 -2.50136e+06 9.598e+02 9.598e+02 9.6e-01 9.7e-08 9.8e+00 3.8e+05 22 -2.53510e+06 9.598e+02 9.598e+02 9.6e-01 1.6e-06 9.8e+00 3.9e+05 23 -5.02585e+06 9.577e+02 9.577e+02 9.6e-01 6.7e-03 9.8e+00 9.8e+05 24 -5.24285e+06 9.575e+02 9.575e+02 9.6e-01 2.7e-05 1.0e+01 1.1e+06 LSQR finished The iteration limit has been reached istop = 7 r1norm = 9.6e+02 anorm = 1.0e+01 arnorm = 2.7e-01 itn = 24 r2norm = 9.6e+02 acond = 1.1e+06 xnorm = 9.3e+06 RUsage is: 7303164 Finding optimal step size... Finished opt2. Tderiv 2.462510 wall, 2.450000 cpu Topt 4.654253 wall, 4.640000 cpu Tstep 0.648339 wall, 0.640000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.61441488302737979, 0.38558511697262016, 0.84258875598890848, 0.47200653883898891, -5.9856746034310664, 31.589494390043541, 5.1024441161700125, 6.5825109878305526, -0.2205776189900458, 9.4109866943288463, 240.7391240872048, -33.507297753717317] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.963e+02 9.963e+02 1.0e+00 4.5e-05 1 -1.54841e+00 9.961e+02 9.961e+02 1.0e+00 1.9e-02 2.4e+00 1.0e+00 2 -2.85140e+02 9.881e+02 9.881e+02 9.9e-01 2.4e-03 3.5e+00 1.4e+01 3 -3.06952e+02 9.855e+02 9.855e+02 9.9e-01 7.0e-04 3.5e+00 3.4e+01 4 -2.90761e+02 9.852e+02 9.852e+02 9.9e-01 4.6e-04 3.5e+00 5.2e+01 5 -3.06318e+02 9.850e+02 9.850e+02 9.9e-01 4.5e-04 3.5e+00 7.4e+01 6 -3.26691e+02 9.848e+02 9.848e+02 9.9e-01 1.0e-02 3.5e+00 9.9e+01 7 -3.35840e+02 9.847e+02 9.847e+02 9.9e-01 1.2e-04 4.9e+00 1.5e+02 8 -1.93199e+03 9.837e+02 9.837e+02 9.9e-01 1.6e-04 4.9e+00 4.7e+02 9 -7.90613e+03 9.789e+02 9.789e+02 9.8e-01 8.3e-04 4.9e+00 1.2e+03 10 -1.72874e+04 9.716e+02 9.716e+02 9.8e-01 4.1e-02 4.9e+00 1.8e+03 11 -1.99395e+04 9.696e+02 9.696e+02 9.7e-01 1.5e-04 6.0e+00 2.4e+03 12 -2.06437e+04 9.689e+02 9.689e+02 9.7e-01 1.6e-03 6.0e+00 2.5e+03 13 -2.82542e+04 9.621e+02 9.621e+02 9.7e-01 1.7e-05 6.0e+00 3.1e+03 14 -3.10722e+04 9.618e+02 9.618e+02 9.7e-01 1.2e-02 6.0e+00 3.4e+03 15 -5.74866e+04 9.596e+02 9.596e+02 9.6e-01 7.3e-05 6.9e+00 6.1e+03 16 -5.75663e+04 9.596e+02 9.596e+02 9.6e-01 5.8e-06 6.9e+00 6.1e+03 17 -5.75702e+04 9.596e+02 9.596e+02 9.6e-01 8.9e-06 6.9e+00 6.1e+03 18 -6.12292e+04 9.595e+02 9.595e+02 9.6e-01 1.8e-03 6.9e+00 7.1e+03 19 -6.14065e+04 9.595e+02 9.595e+02 9.6e-01 2.0e-04 7.7e+00 7.9e+03 20 -1.83727e+05 9.551e+02 9.551e+02 9.6e-01 3.4e-04 7.7e+00 2.5e+04 21 -1.85040e+05 9.550e+02 9.550e+02 9.6e-01 4.4e-07 7.7e+00 2.5e+04 22 -1.85040e+05 9.550e+02 9.550e+02 9.6e-01 3.4e-07 7.7e+00 2.5e+04 23 -1.85040e+05 9.550e+02 9.550e+02 9.6e-01 1.4e-08 8.5e+00 2.7e+04 24 -1.85040e+05 9.550e+02 9.550e+02 9.6e-01 5.0e-11 8.5e+00 2.7e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.6e+02 anorm = 8.5e+00 arnorm = 4.1e-07 itn = 24 r2norm = 9.6e+02 acond = 2.7e+04 xnorm = 3.4e+05 RUsage is: 7404204 Finding optimal step size... Finished opt2. Tderiv 2.445274 wall, 2.440000 cpu Topt 4.840048 wall, 4.820000 cpu Tstep 0.438171 wall, 0.440000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.61765038063743194, 0.38234961936256806, 0.84273205063924883, 0.47153242030918435, -5.9955678955746343, 31.68724946629812, 5.1019812495238241, 6.5821331597270767, -0.22024573647464096, 9.4093488976764394, 243.23145215687103, -33.792221570348524] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.964e+02 9.964e+02 1.0e+00 5.3e-05 1 -3.13705e+00 9.960e+02 9.960e+02 1.0e+00 3.2e-02 2.1e+00 1.0e+00 2 -2.21359e+02 9.880e+02 9.880e+02 9.9e-01 3.1e-03 3.5e+00 1.1e+01 3 -2.38469e+02 9.854e+02 9.854e+02 9.9e-01 9.0e-04 3.5e+00 2.7e+01 4 -2.26034e+02 9.850e+02 9.850e+02 9.9e-01 5.9e-04 3.5e+00 4.0e+01 5 -2.37726e+02 9.849e+02 9.849e+02 9.9e-01 5.9e-04 3.5e+00 5.7e+01 6 -2.59119e+02 9.846e+02 9.846e+02 9.9e-01 1.9e-03 3.5e+00 8.2e+01 7 -2.59150e+02 9.846e+02 9.846e+02 9.9e-01 1.6e-04 4.9e+00 1.2e+02 8 -1.48169e+03 9.836e+02 9.836e+02 9.9e-01 2.0e-04 4.9e+00 3.6e+02 9 -7.44893e+03 9.775e+02 9.775e+02 9.8e-01 1.1e-03 4.9e+00 1.1e+03 10 -1.55372e+04 9.695e+02 9.695e+02 9.7e-01 4.0e-04 4.9e+00 1.5e+03 11 -1.55374e+04 9.695e+02 9.695e+02 9.7e-01 2.5e-04 5.6e+00 1.8e+03 12 -1.61707e+04 9.688e+02 9.688e+02 9.7e-01 2.0e-03 6.0e+00 1.9e+03 13 -2.20735e+04 9.620e+02 9.620e+02 9.7e-01 2.2e-05 6.0e+00 2.4e+03 14 -4.52086e+04 9.595e+02 9.595e+02 9.6e-01 1.3e-04 6.0e+00 4.1e+03 15 -4.52088e+04 9.595e+02 9.595e+02 9.6e-01 9.6e-06 6.9e+00 4.7e+03 16 -4.52101e+04 9.595e+02 9.595e+02 9.6e-01 8.2e-06 6.9e+00 4.8e+03 17 -4.52467e+04 9.595e+02 9.595e+02 9.6e-01 4.1e-05 6.9e+00 4.8e+03 18 -4.71096e+04 9.594e+02 9.594e+02 9.6e-01 2.3e-04 6.9e+00 5.3e+03 19 -1.36868e+05 9.553e+02 9.553e+02 9.6e-01 1.4e-02 6.9e+00 1.7e+04 20 -1.46376e+05 9.549e+02 9.549e+02 9.6e-01 2.4e-04 7.7e+00 1.9e+04 21 -1.46710e+05 9.549e+02 9.549e+02 9.6e-01 1.6e-07 7.7e+00 1.9e+04 22 -1.46710e+05 9.549e+02 9.549e+02 9.6e-01 3.0e-09 7.7e+00 1.9e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 7.7e+00 arnorm = 2.2e-05 itn = 22 r2norm = 9.5e+02 acond = 1.9e+04 xnorm = 2.6e+05 RUsage is: 7500580 Finding optimal step size... Finished opt2. Tderiv 2.448369 wall, 2.440000 cpu Topt 4.469069 wall, 4.450000 cpu Tstep 0.435299 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.62089704502112486, 0.37910295497887525, 0.84286940887350814, 0.47106238691142766, -6.005551566171877, 31.786367472410483, 5.101543948410213, 6.5818086573379082, -0.21992678756399534, 9.4076319498971728, 245.75563185028602, -34.079142153043463] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.964e+02 9.964e+02 1.0e+00 5.3e-05 1 -3.08979e+00 9.961e+02 9.961e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.25665e+02 9.878e+02 9.878e+02 9.9e-01 3.1e-03 3.5e+00 1.1e+01 3 -2.42380e+02 9.852e+02 9.852e+02 9.9e-01 8.9e-04 3.5e+00 2.7e+01 4 -2.29445e+02 9.849e+02 9.849e+02 9.9e-01 5.8e-04 3.5e+00 4.0e+01 5 -2.40774e+02 9.847e+02 9.847e+02 9.9e-01 5.7e-04 3.5e+00 5.7e+01 6 -2.61082e+02 9.845e+02 9.845e+02 9.9e-01 2.4e-03 3.5e+00 8.3e+01 7 -2.61543e+02 9.845e+02 9.845e+02 9.9e-01 1.5e-04 4.9e+00 1.2e+02 8 -1.49441e+03 9.834e+02 9.834e+02 9.9e-01 1.9e-04 4.9e+00 3.7e+02 9 -9.38381e+03 9.757e+02 9.757e+02 9.8e-01 1.1e-03 4.9e+00 1.2e+03 10 -1.59829e+04 9.694e+02 9.694e+02 9.7e-01 1.1e-03 4.9e+00 1.6e+03 11 -1.59842e+04 9.694e+02 9.694e+02 9.7e-01 1.9e-04 5.9e+00 1.9e+03 12 -1.84847e+04 9.668e+02 9.668e+02 9.7e-01 3.3e-03 6.0e+00 2.2e+03 13 -2.28364e+04 9.618e+02 9.618e+02 9.7e-01 2.2e-05 6.0e+00 2.5e+03 14 -4.66786e+04 9.593e+02 9.593e+02 9.6e-01 9.6e-04 6.0e+00 4.2e+03 15 -4.66916e+04 9.593e+02 9.593e+02 9.6e-01 4.3e-05 6.9e+00 4.9e+03 16 -4.67040e+04 9.593e+02 9.593e+02 9.6e-01 6.2e-06 6.9e+00 4.9e+03 17 -4.67124e+04 9.593e+02 9.593e+02 9.6e-01 1.8e-05 6.9e+00 4.9e+03 18 -8.24491e+04 9.578e+02 9.578e+02 9.6e-01 7.9e-04 6.9e+00 1.1e+04 19 -9.71590e+04 9.572e+02 9.572e+02 9.6e-01 1.6e-02 6.9e+00 1.3e+04 20 -1.51599e+05 9.548e+02 9.548e+02 9.6e-01 3.1e-04 7.7e+00 2.0e+04 21 -1.52199e+05 9.548e+02 9.548e+02 9.6e-01 1.3e-07 7.7e+00 2.0e+04 22 -1.52199e+05 9.548e+02 9.548e+02 9.6e-01 1.3e-08 7.7e+00 2.0e+04 23 -1.52199e+05 9.548e+02 9.548e+02 9.6e-01 3.4e-07 7.7e+00 2.0e+04 24 -1.52199e+05 9.548e+02 9.548e+02 9.6e-01 2.1e-10 8.4e+00 2.2e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.4e+00 arnorm = 1.7e-06 itn = 24 r2norm = 9.5e+02 acond = 2.2e+04 xnorm = 2.7e+05 RUsage is: 7595568 Finding optimal step size... Finished opt2. Tderiv 2.446046 wall, 2.440000 cpu Topt 5.072590 wall, 5.060000 cpu Tstep 0.437609 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.62415552414844599, 0.37584447585155406, 0.84300125476008647, 0.47059626450764896, -6.0156323753967449, 31.886872056203714, 5.1011344385694377, 6.5815368790552267, -0.21962062158795134, 9.4058951269676552, 248.31389619402307, -34.368432017828731] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.965e+02 9.965e+02 1.0e+00 5.2e-05 1 -3.03945e+00 9.962e+02 9.962e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.30122e+02 9.877e+02 9.877e+02 9.9e-01 3.0e-03 3.5e+00 1.1e+01 3 -2.46428e+02 9.851e+02 9.851e+02 9.9e-01 8.8e-04 3.5e+00 2.7e+01 4 -2.32980e+02 9.848e+02 9.848e+02 9.9e-01 5.7e-04 3.5e+00 4.1e+01 5 -2.43950e+02 9.846e+02 9.846e+02 9.9e-01 5.6e-04 3.5e+00 5.8e+01 6 -2.63769e+02 9.844e+02 9.844e+02 9.9e-01 3.6e-03 3.5e+00 8.4e+01 7 -2.64049e+02 9.844e+02 9.844e+02 9.9e-01 1.5e-04 4.9e+00 1.2e+02 8 -1.50818e+03 9.833e+02 9.833e+02 9.9e-01 1.9e-04 4.9e+00 3.7e+02 9 -1.22106e+04 9.733e+02 9.733e+02 9.8e-01 1.0e-03 4.9e+00 1.4e+03 10 -1.64514e+04 9.694e+02 9.694e+02 9.7e-01 9.3e-04 4.9e+00 1.6e+03 11 -1.64522e+04 9.694e+02 9.694e+02 9.7e-01 1.9e-04 5.9e+00 2.0e+03 12 -1.70427e+04 9.688e+02 9.688e+02 9.7e-01 1.8e-03 6.0e+00 2.1e+03 13 -2.36368e+04 9.616e+02 9.616e+02 9.7e-01 2.1e-05 6.0e+00 2.6e+03 14 -4.82658e+04 9.592e+02 9.592e+02 9.6e-01 5.6e-05 6.0e+00 4.4e+03 15 -4.82658e+04 9.592e+02 9.592e+02 9.6e-01 2.4e-05 6.7e+00 4.9e+03 16 -4.82704e+04 9.592e+02 9.592e+02 9.6e-01 6.4e-06 6.9e+00 5.1e+03 17 -4.82749e+04 9.592e+02 9.592e+02 9.6e-01 1.4e-05 6.9e+00 5.1e+03 18 -4.86058e+04 9.591e+02 9.591e+02 9.6e-01 9.1e-05 6.9e+00 5.2e+03 19 -1.44694e+05 9.552e+02 9.552e+02 9.6e-01 5.0e-03 6.9e+00 1.8e+04 20 -1.46013e+05 9.552e+02 9.552e+02 9.6e-01 1.3e-03 7.7e+00 2.0e+04 21 -1.57901e+05 9.547e+02 9.547e+02 9.6e-01 2.0e-06 7.7e+00 2.1e+04 22 -1.57903e+05 9.547e+02 9.547e+02 9.6e-01 8.3e-09 7.7e+00 2.1e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 7.7e+00 arnorm = 6.1e-05 itn = 22 r2norm = 9.5e+02 acond = 2.1e+04 xnorm = 2.8e+05 RUsage is: 7620344 Finding optimal step size... Finished opt2. Tderiv 2.438091 wall, 2.440000 cpu Topt 4.087931 wall, 4.060000 cpu Tstep 0.440387 wall, 0.450000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.62742549314303797, 0.37257450685696214, 0.84312670306366022, 0.47013412732633775, -6.0258143537652797, 31.988803941798761, 5.1007489069177678, 6.5813174283208289, -0.21932801914528771, 9.4040906342361534, 250.90492491124732, -34.659842785512915] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.966e+02 9.966e+02 1.0e+00 5.2e-05 1 -2.99319e+00 9.963e+02 9.963e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.34525e+02 9.876e+02 9.876e+02 9.9e-01 3.0e-03 3.5e+00 1.1e+01 3 -2.50400e+02 9.850e+02 9.850e+02 9.9e-01 8.7e-04 3.5e+00 2.8e+01 4 -2.36440e+02 9.846e+02 9.846e+02 9.9e-01 5.6e-04 3.5e+00 4.1e+01 5 -2.47051e+02 9.845e+02 9.845e+02 9.9e-01 5.5e-04 3.5e+00 5.9e+01 6 -2.63387e+02 9.842e+02 9.842e+02 9.9e-01 7.3e-03 3.5e+00 8.3e+01 7 -2.66459e+02 9.842e+02 9.842e+02 9.9e-01 1.4e-04 4.9e+00 1.2e+02 8 -1.52183e+03 9.832e+02 9.832e+02 9.9e-01 1.8e-04 4.9e+00 3.8e+02 9 -1.55321e+04 9.705e+02 9.705e+02 9.7e-01 6.0e-04 4.9e+00 1.6e+03 10 -1.69393e+04 9.693e+02 9.693e+02 9.7e-01 2.0e-03 4.9e+00 1.7e+03 11 -1.69436e+04 9.693e+02 9.693e+02 9.7e-01 1.9e-04 6.0e+00 2.1e+03 12 -2.09067e+04 9.653e+02 9.653e+02 9.7e-01 3.4e-03 6.0e+00 2.4e+03 13 -2.44581e+04 9.615e+02 9.615e+02 9.6e-01 2.0e-05 6.0e+00 2.7e+03 14 -4.98416e+04 9.590e+02 9.590e+02 9.6e-01 1.0e-03 6.0e+00 4.5e+03 15 -4.98571e+04 9.590e+02 9.590e+02 9.6e-01 4.5e-05 6.9e+00 5.2e+03 16 -4.98768e+04 9.590e+02 9.590e+02 9.6e-01 9.1e-06 6.9e+00 5.2e+03 17 -4.98782e+04 9.590e+02 9.590e+02 9.6e-01 6.6e-06 6.9e+00 5.2e+03 18 -7.80275e+04 9.579e+02 9.579e+02 9.6e-01 6.9e-04 6.9e+00 1.1e+04 19 -1.41724e+05 9.554e+02 9.554e+02 9.6e-01 1.8e-02 6.9e+00 1.8e+04 20 -1.63727e+05 9.546e+02 9.546e+02 9.6e-01 6.9e-05 7.7e+00 2.2e+04 21 -1.63758e+05 9.546e+02 9.546e+02 9.6e-01 3.7e-07 7.7e+00 2.2e+04 22 -1.63759e+05 9.546e+02 9.546e+02 9.6e-01 8.3e-09 7.7e+00 2.2e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 7.7e+00 arnorm = 6.1e-05 itn = 22 r2norm = 9.5e+02 acond = 2.2e+04 xnorm = 2.9e+05 RUsage is: 7713272 Finding optimal step size... Finished opt2. Tderiv 2.466879 wall, 2.460000 cpu Topt 4.290458 wall, 4.270000 cpu Tstep 0.435436 wall, 0.440000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.63070703831419306, 0.369292961685807, 0.84324603112259633, 0.46967559257732427, -6.0361003279160377, 32.092186181288788, 5.1003899807551418, 6.5811495247858689, -0.21904867568976896, 9.4022357631785223, 253.52917916069924, -34.953408630075607] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.966e+02 9.966e+02 1.0e+00 5.2e-05 1 -2.94756e+00 9.963e+02 9.963e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.38972e+02 9.875e+02 9.875e+02 9.9e-01 3.0e-03 3.5e+00 1.1e+01 3 -2.54394e+02 9.848e+02 9.848e+02 9.9e-01 8.6e-04 3.5e+00 2.8e+01 4 -2.39915e+02 9.845e+02 9.845e+02 9.9e-01 5.4e-04 3.5e+00 4.2e+01 5 -2.50167e+02 9.843e+02 9.843e+02 9.9e-01 5.3e-04 3.5e+00 5.9e+01 6 -2.68185e+02 9.841e+02 9.841e+02 9.9e-01 3.1e-03 3.5e+00 8.6e+01 7 -2.68862e+02 9.841e+02 9.841e+02 9.9e-01 1.4e-04 4.9e+00 1.2e+02 8 -1.53568e+03 9.831e+02 9.831e+02 9.9e-01 1.7e-04 4.9e+00 3.9e+02 9 -1.70089e+04 9.697e+02 9.697e+02 9.7e-01 3.0e-04 4.9e+00 1.7e+03 10 -1.74990e+04 9.692e+02 9.692e+02 9.7e-01 1.5e-03 4.9e+00 1.7e+03 11 -1.75012e+04 9.692e+02 9.692e+02 9.7e-01 2.4e-04 5.9e+00 2.1e+03 12 -1.89024e+04 9.678e+02 9.678e+02 9.7e-01 2.5e-03 6.0e+00 2.2e+03 13 -2.53083e+04 9.613e+02 9.613e+02 9.6e-01 2.0e-05 6.0e+00 2.7e+03 14 -5.15168e+04 9.588e+02 9.588e+02 9.6e-01 7.5e-04 6.0e+00 4.7e+03 15 -5.15254e+04 9.588e+02 9.588e+02 9.6e-01 3.7e-05 6.9e+00 5.4e+03 16 -5.15385e+04 9.588e+02 9.588e+02 9.6e-01 5.2e-06 6.9e+00 5.4e+03 17 -5.15562e+04 9.588e+02 9.588e+02 9.6e-01 2.4e-05 6.9e+00 5.4e+03 18 -6.03789e+04 9.585e+02 9.585e+02 9.6e-01 4.1e-04 6.9e+00 7.6e+03 19 -7.45055e+04 9.580e+02 9.580e+02 9.6e-01 1.5e-02 6.9e+00 1.0e+04 20 -1.67846e+05 9.546e+02 9.546e+02 9.6e-01 5.0e-04 7.7e+00 2.3e+04 21 -1.69762e+05 9.545e+02 9.545e+02 9.6e-01 1.9e-06 7.7e+00 2.3e+04 22 -1.69764e+05 9.545e+02 9.545e+02 9.6e-01 1.1e-09 7.7e+00 2.3e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 7.7e+00 arnorm = 8.1e-06 itn = 22 r2norm = 9.5e+02 acond = 2.3e+04 xnorm = 3.0e+05 RUsage is: 7921240 Finding optimal step size... Finished opt2. Tderiv 2.626899 wall, 2.620000 cpu Topt 4.543893 wall, 4.530000 cpu Tstep 0.437470 wall, 0.440000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.63399975276155662, 0.36600024723844343, 0.84335850317879224, 0.46922089937996114, -6.0464902119423787, 32.197060928882522, 5.1000580753928038, 6.5810367985116587, -0.21878277981191813, 9.4002612441644668, 256.18515888406603, -35.248804089009205] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.967e+02 9.967e+02 1.0e+00 5.2e-05 1 -2.90583e+00 9.964e+02 9.964e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.43355e+02 9.873e+02 9.873e+02 9.9e-01 2.9e-03 3.5e+00 1.2e+01 3 -2.58297e+02 9.847e+02 9.847e+02 9.9e-01 8.4e-04 3.5e+00 2.8e+01 4 -2.43298e+02 9.844e+02 9.844e+02 9.9e-01 5.3e-04 3.5e+00 4.2e+01 5 -2.53185e+02 9.842e+02 9.842e+02 9.9e-01 5.2e-04 3.5e+00 6.0e+01 6 -2.69678e+02 9.840e+02 9.840e+02 9.9e-01 5.0e-03 3.5e+00 8.6e+01 7 -2.71133e+02 9.840e+02 9.840e+02 9.9e-01 1.4e-04 4.9e+00 1.2e+02 8 -1.54886e+03 9.830e+02 9.830e+02 9.9e-01 1.7e-04 4.9e+00 3.9e+02 9 -1.43924e+04 9.723e+02 9.723e+02 9.8e-01 8.8e-04 4.9e+00 1.6e+03 10 -1.78571e+04 9.692e+02 9.692e+02 9.7e-01 5.8e-03 4.9e+00 1.8e+03 11 -1.78954e+04 9.692e+02 9.692e+02 9.7e-01 1.7e-04 6.0e+00 2.2e+03 12 -2.58783e+04 9.614e+02 9.614e+02 9.6e-01 1.2e-03 6.0e+00 2.8e+03 13 -2.61721e+04 9.611e+02 9.611e+02 9.6e-01 1.9e-05 6.0e+00 2.8e+03 14 -5.20425e+04 9.588e+02 9.588e+02 9.6e-01 8.4e-03 6.0e+00 4.7e+03 15 -5.32234e+04 9.587e+02 9.587e+02 9.6e-01 1.5e-05 6.9e+00 5.6e+03 16 -5.32274e+04 9.587e+02 9.587e+02 9.6e-01 5.3e-06 6.9e+00 5.6e+03 17 -5.32369e+04 9.587e+02 9.587e+02 9.6e-01 2.0e-05 6.9e+00 5.6e+03 18 -5.37269e+04 9.587e+02 9.587e+02 9.6e-01 9.9e-05 6.9e+00 5.7e+03 19 -5.64775e+04 9.586e+02 9.586e+02 9.6e-01 7.0e-03 6.9e+00 6.5e+03 20 -1.75847e+05 9.544e+02 9.544e+02 9.6e-01 3.3e-06 7.7e+00 2.4e+04 21 -1.75847e+05 9.544e+02 9.544e+02 9.6e-01 7.9e-07 7.7e+00 2.4e+04 22 -1.75847e+05 9.544e+02 9.544e+02 9.6e-01 9.1e-09 7.7e+00 2.4e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 7.7e+00 arnorm = 6.7e-05 itn = 22 r2norm = 9.5e+02 acond = 2.4e+04 xnorm = 3.1e+05 RUsage is: 7984320 Finding optimal step size... Finished opt2. Tderiv 2.636838 wall, 2.620000 cpu Topt 4.470920 wall, 4.460000 cpu Tstep 0.442547 wall, 0.440000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.63730333855427612, 0.36269666144572382, 0.84346393211034365, 0.46876979581976413, -6.0569896528400804, 32.303472402902464, 5.0997519834215614, 6.5809779700090614, -0.2185305826527027, 9.3981321555668043, 258.87149998773765, -35.545796326090056] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.968e+02 9.968e+02 1.0e+00 5.1e-05 1 -2.86773e+00 9.965e+02 9.965e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.47672e+02 9.872e+02 9.872e+02 9.9e-01 2.9e-03 3.5e+00 1.2e+01 3 -2.62110e+02 9.845e+02 9.845e+02 9.9e-01 8.3e-04 3.5e+00 2.9e+01 4 -2.46593e+02 9.842e+02 9.842e+02 9.9e-01 5.3e-04 3.5e+00 4.3e+01 5 -2.56116e+02 9.840e+02 9.840e+02 9.9e-01 5.1e-04 3.5e+00 6.0e+01 6 -2.72238e+02 9.838e+02 9.838e+02 9.9e-01 4.2e-03 3.5e+00 8.8e+01 7 -2.73299e+02 9.838e+02 9.838e+02 9.9e-01 1.3e-04 4.9e+00 1.2e+02 8 -1.56181e+03 9.829e+02 9.829e+02 9.9e-01 1.6e-04 4.9e+00 4.0e+02 9 -1.02143e+04 9.760e+02 9.760e+02 9.8e-01 1.1e-03 4.9e+00 1.3e+03 10 -1.83603e+04 9.692e+02 9.692e+02 9.7e-01 5.5e-03 4.9e+00 1.8e+03 11 -1.83957e+04 9.692e+02 9.692e+02 9.7e-01 1.6e-04 6.0e+00 2.2e+03 12 -2.52186e+04 9.628e+02 9.628e+02 9.7e-01 2.8e-03 6.0e+00 2.8e+03 13 -2.70607e+04 9.610e+02 9.610e+02 9.6e-01 1.8e-05 6.0e+00 2.9e+03 14 -5.49073e+04 9.585e+02 9.585e+02 9.6e-01 1.0e-03 6.0e+00 5.0e+03 15 -5.49241e+04 9.585e+02 9.585e+02 9.6e-01 6.2e-05 6.9e+00 5.7e+03 16 -5.49584e+04 9.585e+02 9.585e+02 9.6e-01 5.8e-06 6.9e+00 5.7e+03 17 -5.49607e+04 9.585e+02 9.585e+02 9.6e-01 7.5e-06 6.9e+00 5.7e+03 18 -5.63172e+04 9.585e+02 9.585e+02 9.6e-01 1.6e-04 6.9e+00 6.1e+03 19 -5.89905e+04 9.584e+02 9.584e+02 9.6e-01 6.7e-03 6.9e+00 6.9e+03 20 -1.81471e+05 9.543e+02 9.543e+02 9.6e-01 2.6e-04 7.7e+00 2.5e+04 21 -1.82066e+05 9.543e+02 9.543e+02 9.6e-01 2.4e-06 7.7e+00 2.5e+04 22 -1.82068e+05 9.543e+02 9.543e+02 9.6e-01 2.7e-08 7.7e+00 2.5e+04 23 -1.82068e+05 9.543e+02 9.543e+02 9.6e-01 7.3e-07 7.7e+00 2.5e+04 24 -1.82068e+05 9.543e+02 9.543e+02 9.6e-01 1.1e-10 8.5e+00 2.7e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 8.7e-07 itn = 24 r2norm = 9.5e+02 acond = 2.7e+04 xnorm = 3.2e+05 RUsage is: 8070228 Finding optimal step size... Finished opt2. Tderiv 2.468256 wall, 2.460000 cpu Topt 4.964968 wall, 4.950000 cpu Tstep 0.435155 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.64061770504342597, 0.35938229495657403, 0.84356212737841585, 0.46832209668504943, -6.067597087316801, 32.411452992644932, 5.0994721382730441, 6.5809744466179803, -0.21829137088239725, 9.3958091435208697, 261.58811856022697, -35.844242038716182] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.968e+02 9.968e+02 1.0e+00 5.1e-05 1 -2.83065e+00 9.966e+02 9.966e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.52002e+02 9.871e+02 9.871e+02 9.9e-01 2.9e-03 3.5e+00 1.2e+01 3 -2.65916e+02 9.844e+02 9.844e+02 9.9e-01 8.2e-04 3.5e+00 2.9e+01 4 -2.49877e+02 9.841e+02 9.841e+02 9.9e-01 5.2e-04 3.5e+00 4.3e+01 5 -2.59036e+02 9.839e+02 9.839e+02 9.9e-01 5.0e-04 3.5e+00 6.1e+01 6 -2.74875e+02 9.837e+02 9.837e+02 9.9e-01 2.9e-03 3.5e+00 8.9e+01 7 -2.75436e+02 9.837e+02 9.837e+02 9.9e-01 1.3e-04 4.9e+00 1.3e+02 8 -1.57481e+03 9.828e+02 9.828e+02 9.9e-01 1.5e-04 4.9e+00 4.1e+02 9 -7.06250e+03 9.786e+02 9.786e+02 9.8e-01 9.5e-04 4.9e+00 1.1e+03 10 -1.88959e+04 9.691e+02 9.691e+02 9.7e-01 3.6e-03 4.9e+00 1.9e+03 11 -1.89117e+04 9.691e+02 9.691e+02 9.7e-01 1.6e-04 6.0e+00 2.3e+03 12 -2.52634e+04 9.634e+02 9.634e+02 9.7e-01 3.1e-03 6.0e+00 2.8e+03 13 -2.79781e+04 9.608e+02 9.608e+02 9.6e-01 1.8e-05 6.0e+00 3.0e+03 14 -5.62030e+04 9.584e+02 9.584e+02 9.6e-01 5.0e-03 6.0e+00 5.1e+03 15 -5.66417e+04 9.584e+02 9.584e+02 9.6e-01 1.1e-04 6.9e+00 5.9e+03 16 -5.67579e+04 9.583e+02 9.583e+02 9.6e-01 4.4e-06 6.9e+00 5.9e+03 17 -5.71476e+04 9.583e+02 9.583e+02 9.6e-01 9.4e-05 6.9e+00 6.0e+03 18 -6.46954e+04 9.581e+02 9.581e+02 9.6e-01 3.8e-04 6.9e+00 8.0e+03 19 -6.50642e+04 9.581e+02 9.581e+02 9.6e-01 2.4e-03 6.9e+00 8.1e+03 20 -1.88532e+05 9.542e+02 9.542e+02 9.6e-01 9.5e-05 7.7e+00 2.6e+04 21 -1.88618e+05 9.542e+02 9.542e+02 9.6e-01 1.7e-06 7.7e+00 2.6e+04 22 -1.88618e+05 9.542e+02 9.542e+02 9.6e-01 3.9e-08 7.7e+00 2.6e+04 23 -1.88618e+05 9.542e+02 9.542e+02 9.6e-01 2.0e-07 7.7e+00 2.6e+04 24 -1.88618e+05 9.542e+02 9.542e+02 9.6e-01 6.5e-11 8.5e+00 2.8e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 5.3e-07 itn = 24 r2norm = 9.5e+02 acond = 2.8e+04 xnorm = 3.3e+05 RUsage is: 8097856 Finding optimal step size... Finished opt2. Tderiv 2.436569 wall, 2.430000 cpu Topt 4.075821 wall, 4.070000 cpu Tstep 0.437209 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.64394351312586184, 0.35605648687413821, 0.84365339889197288, 0.46787792937662198, -6.0783150721327557, 32.521015946064715, 5.0992209844051271, 6.5810228083269786, -0.21806392470968039, 9.3933662683203174, 264.33789236478617, -36.144548244337521] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.969e+02 9.969e+02 1.0e+00 5.1e-05 1 -2.78992e+00 9.966e+02 9.966e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.56512e+02 9.870e+02 9.870e+02 9.9e-01 2.9e-03 3.5e+00 1.2e+01 3 -2.69884e+02 9.842e+02 9.842e+02 9.9e-01 8.1e-04 3.5e+00 2.9e+01 4 -2.53306e+02 9.839e+02 9.839e+02 9.9e-01 5.1e-04 3.5e+00 4.4e+01 5 -2.62109e+02 9.838e+02 9.838e+02 9.9e-01 4.9e-04 3.5e+00 6.1e+01 6 -2.77626e+02 9.835e+02 9.835e+02 9.9e-01 6.7e-04 3.5e+00 9.0e+01 7 -2.77723e+02 9.835e+02 9.835e+02 9.9e-01 1.3e-04 4.8e+00 1.3e+02 8 -1.58875e+03 9.826e+02 9.826e+02 9.9e-01 1.5e-04 4.9e+00 4.1e+02 9 -5.14081e+03 9.801e+02 9.801e+02 9.8e-01 8.0e-04 4.9e+00 9.2e+02 10 -1.94507e+04 9.690e+02 9.690e+02 9.7e-01 7.3e-04 4.9e+00 1.9e+03 11 -1.94514e+04 9.690e+02 9.690e+02 9.7e-01 1.6e-04 5.9e+00 2.3e+03 12 -1.96691e+04 9.688e+02 9.688e+02 9.7e-01 1.0e-03 6.0e+00 2.4e+03 13 -2.89442e+04 9.606e+02 9.606e+02 9.6e-01 1.7e-05 6.0e+00 3.1e+03 14 -5.85281e+04 9.582e+02 9.582e+02 9.6e-01 2.4e-03 6.0e+00 5.3e+03 15 -5.86273e+04 9.582e+02 9.582e+02 9.6e-01 4.1e-05 6.9e+00 6.1e+03 16 -5.86493e+04 9.582e+02 9.582e+02 9.6e-01 7.7e-06 6.9e+00 6.1e+03 17 -5.86509e+04 9.582e+02 9.582e+02 9.6e-01 5.0e-06 6.9e+00 6.1e+03 18 -5.87795e+04 9.582e+02 9.582e+02 9.6e-01 4.5e-05 6.9e+00 6.1e+03 19 -5.94166e+04 9.582e+02 9.582e+02 9.6e-01 3.1e-03 6.9e+00 6.3e+03 20 -1.94755e+05 9.541e+02 9.541e+02 9.6e-01 2.5e-04 7.7e+00 2.7e+04 21 -1.95400e+05 9.541e+02 9.541e+02 9.6e-01 1.7e-06 7.7e+00 2.7e+04 22 -1.95400e+05 9.541e+02 9.541e+02 9.6e-01 2.7e-08 7.7e+00 2.7e+04 23 -1.95400e+05 9.541e+02 9.541e+02 9.6e-01 6.7e-07 7.7e+00 2.7e+04 24 -1.95400e+05 9.541e+02 9.541e+02 9.6e-01 1.3e-11 8.5e+00 2.9e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 1.0e-07 itn = 24 r2norm = 9.5e+02 acond = 2.9e+04 xnorm = 3.4e+05 RUsage is: 8278648 Finding optimal step size... Finished opt2. Tderiv 2.603257 wall, 2.600000 cpu Topt 4.865816 wall, 4.840000 cpu Tstep 0.437616 wall, 0.440000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.64728021741298658, 0.35271978258701348, 0.84373709718087508, 0.46743696572386823, -6.0891476767610673, 32.63222158603714, 5.0989960277503137, 6.5811257760807838, -0.21784938847468915, 9.3907100163369321, 267.11834263008615, -36.446249557929335] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.970e+02 9.970e+02 1.0e+00 5.1e-05 1 -2.75426e+00 9.967e+02 9.967e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.60893e+02 9.868e+02 9.868e+02 9.9e-01 2.8e-03 3.5e+00 1.2e+01 3 -2.73695e+02 9.841e+02 9.841e+02 9.9e-01 8.0e-04 3.5e+00 3.0e+01 4 -2.56581e+02 9.838e+02 9.838e+02 9.9e-01 5.0e-04 3.5e+00 4.4e+01 5 -2.65025e+02 9.836e+02 9.836e+02 9.9e-01 4.8e-04 3.5e+00 6.2e+01 6 -2.75791e+02 9.835e+02 9.835e+02 9.9e-01 8.7e-03 3.5e+00 8.6e+01 7 -2.79816e+02 9.834e+02 9.834e+02 9.9e-01 1.2e-04 4.9e+00 1.3e+02 8 -1.60159e+03 9.825e+02 9.825e+02 9.9e-01 1.4e-04 4.9e+00 4.2e+02 9 -4.00902e+03 9.808e+02 9.808e+02 9.8e-01 6.5e-04 4.9e+00 8.0e+02 10 -1.99781e+04 9.690e+02 9.690e+02 9.7e-01 3.5e-03 4.9e+00 2.0e+03 11 -1.99935e+04 9.690e+02 9.690e+02 9.7e-01 1.5e-04 6.0e+00 2.4e+03 12 -2.87085e+04 9.616e+02 9.616e+02 9.6e-01 2.2e-03 6.0e+00 3.1e+03 13 -2.99244e+04 9.605e+02 9.605e+02 9.6e-01 1.7e-05 6.0e+00 3.2e+03 14 -5.98964e+04 9.581e+02 9.581e+02 9.6e-01 5.3e-03 6.0e+00 5.4e+03 15 -6.04195e+04 9.580e+02 9.580e+02 9.6e-01 1.1e-04 6.9e+00 6.3e+03 16 -6.05669e+04 9.580e+02 9.580e+02 9.6e-01 6.2e-06 6.9e+00 6.3e+03 17 -6.05687e+04 9.580e+02 9.580e+02 9.6e-01 5.4e-06 6.9e+00 6.3e+03 18 -6.05892e+04 9.580e+02 9.580e+02 9.6e-01 1.8e-05 6.9e+00 6.3e+03 19 -6.06119e+04 9.580e+02 9.580e+02 9.6e-01 5.7e-04 6.9e+00 6.3e+03 20 -2.01843e+05 9.540e+02 9.540e+02 9.6e-01 1.8e-04 7.7e+00 2.8e+04 21 -2.02218e+05 9.540e+02 9.540e+02 9.6e-01 4.5e-06 7.7e+00 2.8e+04 22 -2.02229e+05 9.540e+02 9.540e+02 9.6e-01 7.8e-08 7.7e+00 2.8e+04 23 -2.02229e+05 9.540e+02 9.540e+02 9.6e-01 4.4e-08 8.3e+00 3.0e+04 24 -2.02229e+05 9.540e+02 9.540e+02 9.6e-01 5.7e-10 8.5e+00 3.0e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 4.6e-06 itn = 24 r2norm = 9.5e+02 acond = 3.0e+04 xnorm = 3.5e+05 RUsage is: 8293840 Finding optimal step size... Finished opt2. Tderiv 2.450770 wall, 2.440000 cpu Topt 4.198660 wall, 4.190000 cpu Tstep 0.440403 wall, 0.440000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.65062740283340514, 0.34937259716659491, 0.84381300938242854, 0.46699904549630761, -6.1000966906472369, 32.74511181416004, 5.0987976579614909, 6.5812816857225469, -0.21764734413236306, 9.3877994436021623, 269.92809135750451, -36.749087935667134] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.971e+02 9.971e+02 1.0e+00 5.0e-05 1 -2.72187e+00 9.968e+02 9.968e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.65198e+02 9.867e+02 9.867e+02 9.9e-01 2.8e-03 3.5e+00 1.2e+01 3 -2.77403e+02 9.840e+02 9.840e+02 9.9e-01 7.9e-04 3.5e+00 3.0e+01 4 -2.59755e+02 9.836e+02 9.836e+02 9.9e-01 4.9e-04 3.5e+00 4.5e+01 5 -2.67837e+02 9.835e+02 9.835e+02 9.9e-01 4.7e-04 3.5e+00 6.2e+01 6 -2.81491e+02 9.833e+02 9.833e+02 9.9e-01 1.9e-03 3.5e+00 9.2e+01 7 -2.81788e+02 9.833e+02 9.833e+02 9.9e-01 1.2e-04 4.9e+00 1.3e+02 8 -1.61381e+03 9.824e+02 9.824e+02 9.9e-01 1.4e-04 4.9e+00 4.3e+02 9 -3.32613e+03 9.813e+02 9.813e+02 9.8e-01 5.4e-04 4.9e+00 7.2e+02 10 -2.05453e+04 9.689e+02 9.689e+02 9.7e-01 1.2e-03 4.9e+00 2.0e+03 11 -2.05470e+04 9.689e+02 9.689e+02 9.7e-01 1.5e-04 6.0e+00 2.5e+03 12 -3.05008e+04 9.606e+02 9.606e+02 9.6e-01 1.2e-03 6.0e+00 3.3e+03 13 -3.09263e+04 9.603e+02 9.603e+02 9.6e-01 1.6e-05 6.0e+00 3.3e+03 14 -6.23732e+04 9.579e+02 9.579e+02 9.6e-01 1.3e-03 6.0e+00 5.6e+03 15 -6.24074e+04 9.579e+02 9.579e+02 9.6e-01 9.1e-05 6.9e+00 6.5e+03 16 -6.25364e+04 9.579e+02 9.579e+02 9.6e-01 1.3e-05 6.9e+00 6.5e+03 17 -6.25386e+04 9.579e+02 9.579e+02 9.6e-01 4.1e-06 6.9e+00 6.5e+03 18 -6.25628e+04 9.579e+02 9.579e+02 9.6e-01 1.8e-05 6.9e+00 6.5e+03 19 -6.34448e+04 9.578e+02 9.578e+02 9.6e-01 3.5e-03 6.9e+00 6.8e+03 20 -2.09189e+05 9.539e+02 9.539e+02 9.6e-01 9.1e-05 7.7e+00 2.9e+04 21 -2.09290e+05 9.539e+02 9.539e+02 9.6e-01 2.6e-06 7.7e+00 2.9e+04 22 -2.09294e+05 9.539e+02 9.539e+02 9.6e-01 1.0e-07 7.7e+00 2.9e+04 23 -2.09294e+05 9.539e+02 9.539e+02 9.6e-01 2.4e-06 7.7e+00 2.9e+04 24 -2.09294e+05 9.539e+02 9.539e+02 9.6e-01 1.4e-10 8.5e+00 3.2e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 1.2e-06 itn = 24 r2norm = 9.5e+02 acond = 3.2e+04 xnorm = 3.6e+05 RUsage is: 8455288 Finding optimal step size... Finished opt2. Tderiv 2.460363 wall, 2.450000 cpu Topt 4.730078 wall, 4.710000 cpu Tstep 0.438645 wall, 0.450000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.65398560263568828, 0.34601439736431167, 0.8438818446354267, 0.46656440026257123, -6.1111670839156744, 32.859724011096468, 5.0986268568161384, 6.5814899995603211, -0.2174583926062803, 9.3846502202731141, 272.76874465800449, -37.05323697064393] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.972e+02 9.972e+02 1.0e+00 5.0e-05 1 -2.68775e+00 9.969e+02 9.969e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.69611e+02 9.866e+02 9.866e+02 9.9e-01 2.8e-03 3.5e+00 1.3e+01 3 -2.81199e+02 9.838e+02 9.838e+02 9.9e-01 7.8e-04 3.5e+00 3.0e+01 4 -2.63005e+02 9.835e+02 9.835e+02 9.9e-01 4.8e-04 3.5e+00 4.5e+01 5 -2.70729e+02 9.833e+02 9.833e+02 9.9e-01 4.6e-04 3.5e+00 6.3e+01 6 -2.78850e+02 9.832e+02 9.832e+02 9.9e-01 1.0e-02 3.5e+00 8.1e+01 7 -2.83827e+02 9.831e+02 9.831e+02 9.9e-01 1.1e-04 4.9e+00 1.3e+02 8 -1.62640e+03 9.823e+02 9.823e+02 9.9e-01 1.4e-04 4.9e+00 4.3e+02 9 -2.89970e+03 9.815e+02 9.815e+02 9.8e-01 4.5e-04 4.9e+00 6.6e+02 10 -2.03108e+04 9.694e+02 9.694e+02 9.7e-01 2.3e-02 4.9e+00 2.1e+03 11 -2.11207e+04 9.688e+02 9.688e+02 9.7e-01 1.6e-04 6.0e+00 2.6e+03 12 -2.11430e+04 9.688e+02 9.688e+02 9.7e-01 3.2e-04 6.0e+00 2.6e+03 13 -3.19738e+04 9.601e+02 9.601e+02 9.6e-01 1.6e-05 6.0e+00 3.4e+03 14 -6.45425e+04 9.577e+02 9.577e+02 9.6e-01 1.1e-03 6.0e+00 5.8e+03 15 -6.45656e+04 9.577e+02 9.577e+02 9.6e-01 4.0e-05 6.9e+00 6.7e+03 16 -6.45875e+04 9.577e+02 9.577e+02 9.6e-01 7.5e-06 6.9e+00 6.7e+03 17 -6.45892e+04 9.577e+02 9.577e+02 9.6e-01 4.1e-06 6.9e+00 6.7e+03 18 -6.51138e+04 9.577e+02 9.577e+02 9.6e-01 8.2e-05 6.9e+00 6.9e+03 19 -6.57120e+04 9.577e+02 9.577e+02 9.6e-01 2.3e-03 6.9e+00 7.1e+03 20 -6.69376e+04 9.576e+02 9.576e+02 9.6e-01 3.5e-04 7.7e+00 8.3e+03 21 -2.16509e+05 9.538e+02 9.538e+02 9.6e-01 1.1e-05 7.7e+00 3.0e+04 22 -2.16558e+05 9.538e+02 9.538e+02 9.6e-01 4.0e-07 7.7e+00 3.0e+04 23 -2.16558e+05 9.538e+02 9.538e+02 9.6e-01 1.0e-05 7.7e+00 3.0e+04 24 -2.16558e+05 9.538e+02 9.538e+02 9.6e-01 2.0e-10 8.5e+00 3.3e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 1.6e-06 itn = 24 r2norm = 9.5e+02 acond = 3.3e+04 xnorm = 3.7e+05 RUsage is: 8481696 Finding optimal step size... Finished opt2. Tderiv 2.450506 wall, 2.430000 cpu Topt 3.867904 wall, 3.860000 cpu Tstep 0.442798 wall, 0.440000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.65735373007574749, 0.34264626992425251, 0.84394270988486464, 0.46613212678716115, -6.1223595179699277, 32.976083349988556, 5.0984831952019913, 6.5817504860800611, -0.21728036871211959, 9.3812266506985438, 275.63830932275158, -37.358377103433824] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.973e+02 9.973e+02 1.0e+00 5.0e-05 1 -2.65813e+00 9.970e+02 9.970e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.73890e+02 9.864e+02 9.864e+02 9.9e-01 2.8e-03 3.5e+00 1.3e+01 3 -2.84832e+02 9.837e+02 9.837e+02 9.9e-01 7.8e-04 3.5e+00 3.1e+01 4 -2.66098e+02 9.833e+02 9.833e+02 9.9e-01 4.7e-04 3.5e+00 4.6e+01 5 -2.73465e+02 9.832e+02 9.832e+02 9.9e-01 4.5e-04 3.5e+00 6.4e+01 6 -2.84945e+02 9.830e+02 9.830e+02 9.9e-01 3.7e-03 3.5e+00 9.3e+01 7 -2.85692e+02 9.830e+02 9.830e+02 9.9e-01 1.1e-04 4.9e+00 1.3e+02 8 -1.63773e+03 9.822e+02 9.822e+02 9.8e-01 1.3e-04 4.9e+00 4.4e+02 9 -2.62378e+03 9.816e+02 9.816e+02 9.8e-01 3.8e-04 4.9e+00 6.2e+02 10 -2.16331e+04 9.688e+02 9.688e+02 9.7e-01 6.5e-03 4.9e+00 2.2e+03 11 -2.16956e+04 9.688e+02 9.688e+02 9.7e-01 1.4e-04 6.0e+00 2.6e+03 12 -2.65920e+04 9.649e+02 9.649e+02 9.7e-01 3.1e-03 6.0e+00 3.1e+03 13 -3.30378e+04 9.600e+02 9.600e+02 9.6e-01 1.5e-05 6.0e+00 3.5e+03 14 -6.53250e+04 9.576e+02 9.576e+02 9.6e-01 7.8e-03 6.0e+00 5.9e+03 15 -6.65715e+04 9.576e+02 9.576e+02 9.6e-01 9.2e-05 6.9e+00 6.9e+03 16 -6.66783e+04 9.575e+02 9.575e+02 9.6e-01 3.6e-06 6.9e+00 6.9e+03 17 -6.66875e+04 9.575e+02 9.575e+02 9.6e-01 1.3e-05 6.9e+00 6.9e+03 18 -9.10259e+04 9.570e+02 9.570e+02 9.6e-01 6.4e-04 6.9e+00 1.3e+04 19 -9.11020e+04 9.570e+02 9.570e+02 9.6e-01 7.0e-04 7.3e+00 1.3e+04 20 -2.23392e+05 9.537e+02 9.537e+02 9.6e-01 2.1e-04 7.7e+00 3.1e+04 21 -2.24013e+05 9.537e+02 9.537e+02 9.6e-01 1.7e-06 7.7e+00 3.1e+04 22 -2.24015e+05 9.537e+02 9.537e+02 9.6e-01 1.3e-07 7.7e+00 3.1e+04 23 -2.24015e+05 9.537e+02 9.537e+02 9.6e-01 1.7e-06 7.7e+00 3.1e+04 24 -2.24015e+05 9.537e+02 9.537e+02 9.6e-01 7.0e-11 8.5e+00 3.4e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 5.7e-07 itn = 24 r2norm = 9.5e+02 acond = 3.4e+04 xnorm = 3.8e+05 RUsage is: 8574380 Finding optimal step size... Finished opt2. Tderiv 2.462488 wall, 2.460000 cpu Topt 4.033410 wall, 4.010000 cpu Tstep 0.436785 wall, 0.440000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.66073207186739047, 0.33926792813260953, 0.84399582008750285, 0.46570293891545961, -6.1336767866965554, 33.094212914348503, 5.0983644681830702, 6.5820611810567566, -0.21711407077502062, 9.3775600132712267, 278.53835330776053, -37.664730402999702] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.973e+02 9.973e+02 1.0e+00 5.0e-05 1 -2.62725e+00 9.971e+02 9.971e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.78258e+02 9.863e+02 9.863e+02 9.9e-01 2.7e-03 3.5e+00 1.3e+01 3 -2.88535e+02 9.835e+02 9.835e+02 9.9e-01 7.7e-04 3.5e+00 3.1e+01 4 -2.69248e+02 9.832e+02 9.832e+02 9.9e-01 4.6e-04 3.5e+00 4.6e+01 5 -2.76261e+02 9.830e+02 9.830e+02 9.9e-01 4.4e-04 3.5e+00 6.4e+01 6 -2.81796e+02 9.830e+02 9.830e+02 9.9e-01 1.0e-02 3.5e+00 7.9e+01 7 -2.87607e+02 9.828e+02 9.828e+02 9.9e-01 1.1e-04 4.9e+00 1.3e+02 8 -1.64930e+03 9.820e+02 9.820e+02 9.8e-01 1.3e-04 4.9e+00 4.5e+02 9 -2.44125e+03 9.816e+02 9.816e+02 9.8e-01 3.2e-04 4.9e+00 6.0e+02 10 -2.22722e+04 9.687e+02 9.687e+02 9.7e-01 4.3e-03 4.9e+00 2.2e+03 11 -2.22997e+04 9.687e+02 9.687e+02 9.7e-01 1.4e-04 6.0e+00 2.7e+03 12 -2.40098e+04 9.674e+02 9.674e+02 9.7e-01 2.2e-03 6.0e+00 2.9e+03 13 -3.41499e+04 9.598e+02 9.598e+02 9.6e-01 1.5e-05 6.0e+00 3.6e+03 14 -6.71230e+04 9.575e+02 9.575e+02 9.6e-01 9.7e-04 6.0e+00 6.1e+03 15 -6.71461e+04 9.575e+02 9.575e+02 9.6e-01 3.8e-04 6.8e+00 6.9e+03 16 -6.88459e+04 9.574e+02 9.574e+02 9.6e-01 2.7e-05 6.9e+00 7.1e+03 17 -6.88591e+04 9.574e+02 9.574e+02 9.6e-01 3.5e-06 6.9e+00 7.1e+03 18 -6.88696e+04 9.574e+02 9.574e+02 9.6e-01 1.0e-05 6.9e+00 7.1e+03 19 -6.97843e+04 9.574e+02 9.574e+02 9.6e-01 3.3e-03 6.9e+00 7.4e+03 20 -2.25089e+05 9.538e+02 9.538e+02 9.6e-01 6.3e-04 7.7e+00 3.2e+04 21 -2.31724e+05 9.536e+02 9.536e+02 9.6e-01 2.5e-06 7.7e+00 3.2e+04 22 -2.31729e+05 9.536e+02 9.536e+02 9.6e-01 2.0e-07 7.7e+00 3.2e+04 23 -2.31729e+05 9.536e+02 9.536e+02 9.6e-01 3.1e-06 7.7e+00 3.2e+04 24 -2.31729e+05 9.536e+02 9.536e+02 9.6e-01 1.5e-10 8.5e+00 3.5e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 1.2e-06 itn = 24 r2norm = 9.5e+02 acond = 3.5e+04 xnorm = 3.9e+05 RUsage is: 8736820 Finding optimal step size... Finished opt2. Tderiv 2.447308 wall, 2.440000 cpu Topt 4.590285 wall, 4.580000 cpu Tstep 0.436972 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.66412070590493066, 0.33587929409506928, 0.84404117007068435, 0.46527658324545562, -6.1451229965268439, 33.21419138938311, 5.0982737687911568, 6.5824229888764068, -0.21695868500276097, 9.3735780926955119, 281.4673852610178, -37.971953609029015] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.974e+02 9.974e+02 1.0e+00 4.9e-05 1 -2.59889e+00 9.972e+02 9.972e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.82560e+02 9.861e+02 9.861e+02 9.9e-01 2.7e-03 3.5e+00 1.3e+01 3 -2.92143e+02 9.834e+02 9.834e+02 9.9e-01 7.6e-04 3.5e+00 3.1e+01 4 -2.72302e+02 9.830e+02 9.830e+02 9.9e-01 4.6e-04 3.5e+00 4.7e+01 5 -2.78958e+02 9.829e+02 9.829e+02 9.9e-01 4.3e-04 3.5e+00 6.5e+01 6 -2.87616e+02 9.827e+02 9.827e+02 9.9e-01 8.7e-03 3.5e+00 9.0e+01 7 -2.89397e+02 9.827e+02 9.827e+02 9.9e-01 1.0e-04 4.9e+00 1.4e+02 8 -1.65976e+03 9.819e+02 9.819e+02 9.8e-01 1.3e-04 4.9e+00 4.5e+02 9 -2.31747e+03 9.815e+02 9.815e+02 9.8e-01 2.8e-04 4.9e+00 5.8e+02 10 -2.25118e+04 9.689e+02 9.689e+02 9.7e-01 1.6e-02 4.9e+00 2.3e+03 11 -2.29078e+04 9.686e+02 9.686e+02 9.7e-01 1.3e-04 6.0e+00 2.8e+03 12 -3.26482e+04 9.617e+02 9.617e+02 9.6e-01 2.6e-03 6.0e+00 3.5e+03 13 -3.52838e+04 9.597e+02 9.597e+02 9.6e-01 1.4e-05 6.0e+00 3.7e+03 14 -4.07385e+04 9.593e+02 9.593e+02 9.6e-01 1.5e-02 6.0e+00 4.2e+03 15 -6.97984e+04 9.573e+02 9.573e+02 9.6e-01 2.9e-04 6.9e+00 7.3e+03 16 -7.10785e+04 9.572e+02 9.572e+02 9.6e-01 5.2e-06 6.9e+00 7.3e+03 17 -7.10799e+04 9.572e+02 9.572e+02 9.6e-01 3.9e-06 6.9e+00 7.3e+03 18 -7.11374e+04 9.572e+02 9.572e+02 9.6e-01 4.8e-05 6.9e+00 7.4e+03 19 -7.11377e+04 9.572e+02 9.572e+02 9.6e-01 2.5e-05 7.5e+00 8.0e+03 20 -2.38857e+05 9.536e+02 9.536e+02 9.6e-01 1.5e-04 7.7e+00 3.4e+04 21 -2.39228e+05 9.536e+02 9.536e+02 9.6e-01 1.9e-05 7.7e+00 3.4e+04 22 -2.39445e+05 9.536e+02 9.536e+02 9.6e-01 3.3e-06 7.7e+00 3.4e+04 23 -2.39445e+05 9.536e+02 9.536e+02 9.6e-01 4.2e-07 8.4e+00 3.7e+04 24 -2.39445e+05 9.536e+02 9.536e+02 9.6e-01 3.4e-10 8.5e+00 3.7e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 2.8e-06 itn = 24 r2norm = 9.5e+02 acond = 3.7e+04 xnorm = 4.0e+05 RUsage is: 8867896 Finding optimal step size... Finished opt2. Tderiv 2.451562 wall, 2.440000 cpu Topt 4.721230 wall, 4.710000 cpu Tstep 0.436951 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.66751813973317853, 0.33248186026682153, 0.84407808387741823, 0.46485212623304417, -6.1567011968480241, 33.336061710888629, 5.0982097174876921, 6.5828395099524641, -0.21681612734949801, 9.3691948864193932, 284.42196813051731, -38.279474086608623] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.975e+02 9.975e+02 1.0e+00 4.9e-05 1 -2.57658e+00 9.972e+02 9.972e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.86635e+02 9.860e+02 9.860e+02 9.9e-01 2.7e-03 3.5e+00 1.3e+01 3 -2.95496e+02 9.832e+02 9.832e+02 9.9e-01 7.5e-04 3.5e+00 3.2e+01 4 -2.75114e+02 9.829e+02 9.829e+02 9.9e-01 4.5e-04 3.5e+00 4.7e+01 5 -2.81416e+02 9.827e+02 9.827e+02 9.9e-01 4.2e-04 3.5e+00 6.5e+01 6 -2.85003e+02 9.826e+02 9.826e+02 9.9e-01 1.0e-02 3.5e+00 8.2e+01 7 -2.90934e+02 9.825e+02 9.825e+02 9.8e-01 1.0e-04 4.9e+00 1.4e+02 8 -1.66859e+03 9.818e+02 9.818e+02 9.8e-01 1.3e-04 4.9e+00 4.6e+02 9 -2.23139e+03 9.815e+02 9.815e+02 9.8e-01 2.4e-04 4.9e+00 5.7e+02 10 -2.21307e+04 9.694e+02 9.694e+02 9.7e-01 2.9e-02 4.9e+00 2.3e+03 11 -2.35250e+04 9.686e+02 9.686e+02 9.7e-01 1.3e-04 6.0e+00 2.9e+03 12 -2.40265e+04 9.682e+02 9.682e+02 9.7e-01 1.1e-03 6.0e+00 2.9e+03 13 -3.64348e+04 9.595e+02 9.595e+02 9.6e-01 1.4e-05 6.0e+00 3.8e+03 14 -4.01189e+04 9.593e+02 9.593e+02 9.6e-01 1.2e-02 6.0e+00 4.2e+03 15 -7.24813e+04 9.571e+02 9.571e+02 9.6e-01 2.4e-04 6.9e+00 7.5e+03 16 -7.33404e+04 9.571e+02 9.571e+02 9.6e-01 6.6e-06 6.9e+00 7.6e+03 17 -7.33423e+04 9.571e+02 9.571e+02 9.6e-01 3.7e-06 6.9e+00 7.6e+03 18 -7.33477e+04 9.571e+02 9.571e+02 9.6e-01 7.4e-06 6.9e+00 7.6e+03 19 -7.33478e+04 9.571e+02 9.571e+02 9.6e-01 3.0e-05 7.0e+00 7.6e+03 20 -2.46515e+05 9.535e+02 9.535e+02 9.6e-01 1.2e-04 7.7e+00 3.5e+04 21 -2.46821e+05 9.535e+02 9.535e+02 9.6e-01 3.1e-05 7.7e+00 3.5e+04 22 -2.47411e+05 9.535e+02 9.535e+02 9.6e-01 3.4e-07 7.7e+00 3.5e+04 23 -2.47411e+05 9.535e+02 9.535e+02 9.6e-01 5.7e-07 7.9e+00 3.6e+04 24 -2.47411e+05 9.535e+02 9.535e+02 9.6e-01 7.2e-10 8.5e+00 3.8e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 5.8e-06 itn = 24 r2norm = 9.5e+02 acond = 3.8e+04 xnorm = 4.2e+05 RUsage is: 8921492 Finding optimal step size... Finished opt2. Tderiv 2.468464 wall, 2.460000 cpu Topt 4.904304 wall, 4.900000 cpu Tstep 0.440034 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.67092545619137867, 0.32907454380862139, 0.84410670146667599, 0.46443038876761655, -6.1684171868577184, 33.459846234821235, 5.098173105900683, 6.5833058860276807, -0.21668392815944523, 9.3644983857090089, 287.40586395723079, -38.587847483930908] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.976e+02 9.976e+02 1.0e+00 4.9e-05 1 -2.54976e+00 9.973e+02 9.973e+02 1.0e+00 3.1e-02 2.1e+00 1.0e+00 2 -2.90933e+02 9.859e+02 9.859e+02 9.9e-01 2.7e-03 3.5e+00 1.4e+01 3 -2.99052e+02 9.830e+02 9.830e+02 9.9e-01 7.4e-04 3.5e+00 3.2e+01 4 -2.78108e+02 9.827e+02 9.827e+02 9.9e-01 4.4e-04 3.5e+00 4.7e+01 5 -2.84062e+02 9.826e+02 9.826e+02 9.8e-01 4.1e-04 3.5e+00 6.6e+01 6 -2.89244e+02 9.825e+02 9.825e+02 9.8e-01 9.3e-03 3.5e+00 8.9e+01 7 -2.92659e+02 9.824e+02 9.824e+02 9.8e-01 9.9e-05 4.9e+00 1.4e+02 8 -1.67809e+03 9.816e+02 9.816e+02 9.8e-01 1.3e-04 4.9e+00 4.7e+02 9 -2.17372e+03 9.814e+02 9.814e+02 9.8e-01 2.1e-04 4.9e+00 5.6e+02 10 -2.20705e+04 9.697e+02 9.697e+02 9.7e-01 3.4e-02 4.9e+00 2.3e+03 11 -2.41740e+04 9.685e+02 9.685e+02 9.7e-01 1.3e-04 6.0e+00 3.0e+03 12 -2.44084e+04 9.684e+02 9.684e+02 9.7e-01 7.3e-04 6.0e+00 3.0e+03 13 -3.76552e+04 9.593e+02 9.593e+02 9.6e-01 1.3e-05 6.0e+00 4.0e+03 14 -3.83668e+04 9.593e+02 9.593e+02 9.6e-01 5.6e-03 6.0e+00 4.0e+03 15 -7.07466e+04 9.572e+02 9.572e+02 9.6e-01 5.1e-04 6.9e+00 7.5e+03 16 -7.56816e+04 9.569e+02 9.569e+02 9.6e-01 4.7e-05 6.9e+00 7.8e+03 17 -7.57312e+04 9.569e+02 9.569e+02 9.6e-01 2.9e-06 6.9e+00 7.8e+03 18 -7.57465e+04 9.569e+02 9.569e+02 9.6e-01 3.4e-05 6.9e+00 7.8e+03 19 -7.57467e+04 9.569e+02 9.569e+02 9.6e-01 1.1e-05 7.6e+00 8.6e+03 20 -2.52117e+05 9.535e+02 9.535e+02 9.6e-01 4.0e-04 7.7e+00 3.6e+04 21 -2.55525e+05 9.534e+02 9.534e+02 9.6e-01 1.3e-05 7.7e+00 3.6e+04 22 -2.55634e+05 9.534e+02 9.534e+02 9.6e-01 6.1e-06 7.7e+00 3.6e+04 23 -2.55634e+05 9.534e+02 9.534e+02 9.6e-01 1.2e-07 8.5e+00 4.0e+04 24 -2.55634e+05 9.534e+02 9.534e+02 9.6e-01 1.1e-09 8.5e+00 4.0e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 9.0e-06 itn = 24 r2norm = 9.5e+02 acond = 4.0e+04 xnorm = 4.3e+05 RUsage is: 9014800 Finding optimal step size... Finished opt2. Tderiv 2.438183 wall, 2.440000 cpu Topt 4.747814 wall, 4.720000 cpu Tstep 0.437823 wall, 0.450000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.67434137845681896, 0.32565862154318115, 0.84412699933405733, 0.4640113749138281, -6.1802672619329355, 33.585608790767807, 5.098164041073157, 6.5838239130120835, -0.2165632283145453, 9.3593350088623506, 290.41525544591212, -38.896289063985478] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.977e+02 9.977e+02 1.0e+00 4.9e-05 1 -2.52872e+00 9.974e+02 9.974e+02 1.0e+00 3.2e-02 2.1e+00 1.0e+00 2 -2.95001e+02 9.857e+02 9.857e+02 9.9e-01 2.7e-03 3.5e+00 1.4e+01 3 -3.02349e+02 9.829e+02 9.829e+02 9.9e-01 7.3e-04 3.5e+00 3.2e+01 4 -2.80856e+02 9.826e+02 9.826e+02 9.8e-01 4.3e-04 3.5e+00 4.8e+01 5 -2.86459e+02 9.824e+02 9.824e+02 9.8e-01 4.0e-04 3.5e+00 6.6e+01 6 -2.94036e+02 9.822e+02 9.822e+02 9.8e-01 6.6e-04 3.5e+00 9.9e+01 7 -2.94118e+02 9.822e+02 9.822e+02 9.8e-01 9.9e-05 4.8e+00 1.4e+02 8 -1.68538e+03 9.815e+02 9.815e+02 9.8e-01 1.3e-04 4.9e+00 4.7e+02 9 -2.13277e+03 9.813e+02 9.813e+02 9.8e-01 1.9e-04 4.9e+00 5.6e+02 10 -2.48189e+04 9.684e+02 9.684e+02 9.7e-01 5.3e-04 4.9e+00 2.5e+03 11 -2.48194e+04 9.684e+02 9.684e+02 9.7e-01 1.3e-04 5.9e+00 3.0e+03 12 -2.53050e+04 9.681e+02 9.681e+02 9.7e-01 1.1e-03 6.0e+00 3.1e+03 13 -3.88782e+04 9.592e+02 9.592e+02 9.6e-01 1.3e-05 6.0e+00 4.1e+03 14 -7.77787e+04 9.568e+02 9.568e+02 9.6e-01 1.6e-04 6.0e+00 7.0e+03 15 -7.77871e+04 9.568e+02 9.568e+02 9.6e-01 5.7e-04 6.1e+00 7.0e+03 16 -7.81220e+04 9.567e+02 9.567e+02 9.6e-01 2.0e-05 6.9e+00 8.1e+03 17 -7.81320e+04 9.567e+02 9.567e+02 9.6e-01 2.8e-06 6.9e+00 8.1e+03 18 -7.81420e+04 9.567e+02 9.567e+02 9.6e-01 8.7e-06 6.9e+00 8.1e+03 19 -2.46987e+05 9.536e+02 9.536e+02 9.6e-01 9.9e-03 6.9e+00 3.2e+04 20 -2.57804e+05 9.534e+02 9.534e+02 9.6e-01 5.1e-04 7.7e+00 3.7e+04 21 -2.63863e+05 9.533e+02 9.533e+02 9.6e-01 5.5e-06 7.7e+00 3.8e+04 22 -2.63881e+05 9.533e+02 9.533e+02 9.6e-01 2.2e-07 7.7e+00 3.8e+04 23 -2.63881e+05 9.533e+02 9.533e+02 9.6e-01 3.1e-07 7.7e+00 3.8e+04 24 -2.63881e+05 9.533e+02 9.533e+02 9.6e-01 1.2e-10 8.5e+00 4.1e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 9.9e-07 itn = 24 r2norm = 9.5e+02 acond = 4.1e+04 xnorm = 4.4e+05 RUsage is: 9112316 Finding optimal step size... Finished opt2. Tderiv 2.446443 wall, 2.430000 cpu Topt 4.734301 wall, 4.720000 cpu Tstep 0.436111 wall, 0.440000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.67776537470432585, 0.3222346252956742, 0.84413841167525405, 0.46359456383985692, -6.1922619142169522, 33.713389104627531, 5.0981832624893189, 6.5843916935277704, -0.21645364710001996, 9.3537537814843894, 293.44977608788423, -39.204894318085771] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.978e+02 9.978e+02 1.0e+00 4.8e-05 1 -2.50930e+00 9.975e+02 9.975e+02 1.0e+00 3.2e-02 2.0e+00 1.0e+00 2 -2.99016e+02 9.856e+02 9.856e+02 9.9e-01 2.6e-03 3.5e+00 1.4e+01 3 -3.05566e+02 9.827e+02 9.827e+02 9.8e-01 7.3e-04 3.5e+00 3.3e+01 4 -2.83520e+02 9.824e+02 9.824e+02 9.8e-01 4.3e-04 3.5e+00 4.8e+01 5 -2.88773e+02 9.823e+02 9.823e+02 9.8e-01 3.9e-04 3.5e+00 6.7e+01 6 -2.91726e+02 9.822e+02 9.822e+02 9.8e-01 9.8e-03 3.5e+00 8.7e+01 7 -2.95472e+02 9.821e+02 9.821e+02 9.8e-01 9.4e-05 4.9e+00 1.4e+02 8 -1.69150e+03 9.814e+02 9.814e+02 9.8e-01 1.3e-04 4.9e+00 4.8e+02 9 -2.10493e+03 9.812e+02 9.812e+02 9.8e-01 1.7e-04 4.9e+00 5.6e+02 10 -2.49847e+04 9.686e+02 9.686e+02 9.7e-01 1.6e-02 4.9e+00 2.5e+03 11 -2.54771e+04 9.683e+02 9.683e+02 9.7e-01 1.2e-04 6.0e+00 3.1e+03 12 -2.75564e+04 9.671e+02 9.671e+02 9.7e-01 2.0e-03 6.0e+00 3.3e+03 13 -4.01382e+04 9.590e+02 9.590e+02 9.6e-01 1.3e-05 6.0e+00 4.2e+03 14 -7.45577e+04 9.570e+02 9.570e+02 9.6e-01 1.3e-02 6.0e+00 6.8e+03 15 -7.91092e+04 9.567e+02 9.567e+02 9.6e-01 2.8e-04 6.9e+00 8.2e+03 16 -8.05991e+04 9.566e+02 9.566e+02 9.6e-01 1.7e-05 6.9e+00 8.3e+03 17 -8.06067e+04 9.566e+02 9.566e+02 9.6e-01 2.6e-06 6.9e+00 8.3e+03 18 -8.06755e+04 9.566e+02 9.566e+02 9.6e-01 2.3e-05 6.9e+00 8.3e+03 19 -8.06769e+04 9.566e+02 9.566e+02 9.6e-01 1.1e-04 6.9e+00 8.4e+03 20 -2.68915e+05 9.533e+02 9.533e+02 9.6e-01 2.7e-04 7.7e+00 3.9e+04 21 -2.70789e+05 9.532e+02 9.532e+02 9.6e-01 4.6e-05 7.7e+00 3.9e+04 22 -2.72405e+05 9.532e+02 9.532e+02 9.6e-01 3.8e-07 7.7e+00 3.9e+04 23 -2.72405e+05 9.532e+02 9.532e+02 9.6e-01 1.1e-06 7.8e+00 3.9e+04 24 -2.72404e+05 9.532e+02 9.532e+02 9.6e-01 4.6e-10 8.5e+00 4.3e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 3.7e-06 itn = 24 r2norm = 9.5e+02 acond = 4.3e+04 xnorm = 4.5e+05 RUsage is: 9251268 Finding optimal step size... Finished opt2. Tderiv 2.622420 wall, 2.610000 cpu Topt 4.564469 wall, 4.550000 cpu Tstep 0.440147 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.68119774613980177, 0.31880225386019823, 0.84414159022430257, 0.46317948696960909, -6.204400074566025, 33.843223423853424, 5.0982295916751958, 6.5850058586114173, -0.21635351956464702, 9.3477422230517853, 296.51039267889649, -39.513697876417254] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.979e+02 9.979e+02 1.0e+00 4.8e-05 1 -2.48918e+00 9.976e+02 9.976e+02 1.0e+00 3.2e-02 2.0e+00 1.0e+00 2 -3.03082e+02 9.854e+02 9.854e+02 9.9e-01 2.6e-03 3.5e+00 1.4e+01 3 -3.08811e+02 9.826e+02 9.826e+02 9.8e-01 7.2e-04 3.5e+00 3.3e+01 4 -2.86203e+02 9.823e+02 9.823e+02 9.8e-01 4.2e-04 3.5e+00 4.9e+01 5 -2.91109e+02 9.821e+02 9.821e+02 9.8e-01 3.9e-04 3.5e+00 6.7e+01 6 -2.96212e+02 9.820e+02 9.820e+02 9.8e-01 8.2e-03 3.5e+00 9.4e+01 7 -2.96843e+02 9.819e+02 9.819e+02 9.8e-01 9.1e-05 4.9e+00 1.4e+02 8 -1.69683e+03 9.812e+02 9.812e+02 9.8e-01 1.3e-04 4.9e+00 4.9e+02 9 -2.08710e+03 9.810e+02 9.810e+02 9.8e-01 1.6e-04 4.9e+00 5.6e+02 10 -2.00468e+04 9.715e+02 9.715e+02 9.7e-01 5.0e-02 4.9e+00 2.3e+03 11 -2.61589e+04 9.683e+02 9.683e+02 9.7e-01 1.2e-04 6.0e+00 3.2e+03 12 -3.42052e+04 9.634e+02 9.634e+02 9.7e-01 3.0e-03 6.0e+00 3.8e+03 13 -4.14447e+04 9.589e+02 9.589e+02 9.6e-01 1.2e-05 6.0e+00 4.3e+03 14 -4.48571e+04 9.587e+02 9.587e+02 9.6e-01 1.1e-02 6.0e+00 4.7e+03 15 -7.90641e+04 9.567e+02 9.567e+02 9.6e-01 4.3e-04 6.9e+00 8.3e+03 16 -8.30991e+04 9.564e+02 9.564e+02 9.6e-01 5.2e-05 6.9e+00 8.6e+03 17 -8.31684e+04 9.564e+02 9.564e+02 9.6e-01 2.5e-06 6.9e+00 8.6e+03 18 -8.31872e+04 9.564e+02 9.564e+02 9.6e-01 1.6e-05 6.9e+00 8.6e+03 19 -8.31873e+04 9.564e+02 9.564e+02 9.6e-01 1.5e-05 7.3e+00 9.1e+03 20 -2.70115e+05 9.533e+02 9.533e+02 9.6e-01 1.3e-04 7.7e+00 3.9e+04 21 -2.71529e+05 9.533e+02 9.533e+02 9.6e-01 1.8e-04 7.7e+00 4.0e+04 22 -2.80978e+05 9.531e+02 9.531e+02 9.6e-01 7.7e-07 7.7e+00 4.1e+04 23 -2.80978e+05 9.531e+02 9.531e+02 9.6e-01 1.0e-07 8.4e+00 4.4e+04 24 -2.80978e+05 9.531e+02 9.531e+02 9.6e-01 5.7e-10 8.5e+00 4.4e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 4.6e-06 itn = 24 r2norm = 9.5e+02 acond = 4.4e+04 xnorm = 4.6e+05 RUsage is: 9338464 Finding optimal step size... Finished opt2. Tderiv 2.450621 wall, 2.450000 cpu Topt 4.700717 wall, 4.680000 cpu Tstep 0.435242 wall, 0.440000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.68463650005440091, 0.31536349994559909, 0.84413582305239176, 0.46276687602803657, -6.2166909841945515, 33.975174702062652, 5.0983039055072172, 6.5856692074151848, -0.21626276225625837, 9.3411868938361895, 299.59253491774018, -39.821996496597734] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.980e+02 9.980e+02 1.0e+00 4.8e-05 1 -2.47588e+00 9.977e+02 9.977e+02 1.0e+00 3.2e-02 2.0e+00 1.0e+00 2 -3.06836e+02 9.853e+02 9.853e+02 9.9e-01 2.6e-03 3.5e+00 1.4e+01 3 -3.11716e+02 9.824e+02 9.824e+02 9.8e-01 7.1e-04 3.5e+00 3.3e+01 4 -2.88564e+02 9.821e+02 9.821e+02 9.8e-01 4.1e-04 3.5e+00 4.9e+01 5 -2.93123e+02 9.820e+02 9.820e+02 9.8e-01 3.8e-04 3.5e+00 6.8e+01 6 -2.94551e+02 9.819e+02 9.819e+02 9.8e-01 9.7e-03 3.5e+00 8.6e+01 7 -2.97876e+02 9.818e+02 9.818e+02 9.8e-01 8.8e-05 4.9e+00 1.4e+02 8 -1.69948e+03 9.811e+02 9.811e+02 9.8e-01 1.3e-04 4.9e+00 4.9e+02 9 -2.07474e+03 9.809e+02 9.809e+02 9.8e-01 1.4e-04 4.9e+00 5.6e+02 10 -2.52154e+04 9.690e+02 9.690e+02 9.7e-01 2.8e-02 4.9e+00 2.6e+03 11 -2.68378e+04 9.682e+02 9.682e+02 9.7e-01 1.1e-04 6.0e+00 3.3e+03 12 -2.70554e+04 9.680e+02 9.680e+02 9.7e-01 7.2e-04 6.0e+00 3.3e+03 13 -4.27506e+04 9.587e+02 9.587e+02 9.6e-01 1.2e-05 6.0e+00 4.5e+03 14 -5.35920e+04 9.581e+02 9.581e+02 9.6e-01 1.7e-02 6.0e+00 5.5e+03 15 -8.12546e+04 9.565e+02 9.565e+02 9.6e-01 4.5e-04 6.9e+00 8.5e+03 16 -8.57359e+04 9.563e+02 9.563e+02 9.6e-01 1.1e-05 6.9e+00 8.8e+03 17 -8.57421e+04 9.563e+02 9.563e+02 9.6e-01 3.0e-06 6.9e+00 8.8e+03 18 -8.57439e+04 9.563e+02 9.563e+02 9.6e-01 3.8e-06 6.9e+00 8.8e+03 19 -8.57440e+04 9.563e+02 9.563e+02 9.6e-01 3.4e-05 6.9e+00 8.8e+03 20 -1.55607e+05 9.552e+02 9.552e+02 9.6e-01 1.3e-03 7.7e+00 2.6e+04 21 -2.87101e+05 9.531e+02 9.531e+02 9.5e-01 5.6e-05 7.7e+00 4.2e+04 22 -2.89896e+05 9.531e+02 9.531e+02 9.5e-01 1.1e-06 7.7e+00 4.2e+04 23 -2.89896e+05 9.531e+02 9.531e+02 9.5e-01 3.8e-07 8.4e+00 4.6e+04 24 -2.89897e+05 9.531e+02 9.531e+02 9.5e-01 1.5e-09 8.5e+00 4.6e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 1.2e-05 itn = 24 r2norm = 9.5e+02 acond = 4.6e+04 xnorm = 4.8e+05 RUsage is: 9430656 Finding optimal step size... Finished opt2. Tderiv 2.454631 wall, 2.440000 cpu Topt 4.756317 wall, 4.750000 cpu Tstep 0.434775 wall, 0.440000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.68808388765238881, 0.31191611234761124, 0.8441225285092514, 0.46235565798897815, -6.2291333110731602, 34.109273443119349, 5.0984050098744493, 6.586379917964182, -0.21618249190866107, 9.3342169604425802, 302.70195158507369, -40.13056109268009] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.981e+02 9.981e+02 1.0e+00 4.8e-05 1 -2.45545e+00 9.978e+02 9.978e+02 1.0e+00 3.2e-02 2.0e+00 1.0e+00 2 -3.10952e+02 9.851e+02 9.851e+02 9.9e-01 2.6e-03 3.5e+00 1.4e+01 3 -3.14961e+02 9.822e+02 9.822e+02 9.8e-01 7.0e-04 3.5e+00 3.4e+01 4 -2.91232e+02 9.819e+02 9.819e+02 9.8e-01 4.1e-04 3.5e+00 5.0e+01 5 -2.95451e+02 9.818e+02 9.818e+02 9.8e-01 3.7e-04 3.5e+00 6.8e+01 6 -2.95694e+02 9.818e+02 9.818e+02 9.8e-01 8.4e-03 3.5e+00 7.8e+01 7 -2.99224e+02 9.816e+02 9.816e+02 9.8e-01 8.6e-05 4.9e+00 1.5e+02 8 -1.70302e+03 9.809e+02 9.809e+02 9.8e-01 1.3e-04 4.9e+00 5.0e+02 9 -2.07055e+03 9.808e+02 9.808e+02 9.8e-01 1.3e-04 4.9e+00 5.7e+02 10 -6.48527e+03 9.786e+02 9.786e+02 9.8e-01 4.3e-02 4.9e+00 1.3e+03 11 -2.75648e+04 9.681e+02 9.681e+02 9.7e-01 1.1e-04 6.0e+00 3.4e+03 12 -2.85665e+04 9.676e+02 9.676e+02 9.7e-01 1.3e-03 6.0e+00 3.5e+03 13 -4.41524e+04 9.586e+02 9.586e+02 9.6e-01 1.1e-05 6.0e+00 4.6e+03 14 -4.41587e+04 9.586e+02 9.586e+02 9.6e-01 4.9e-04 6.0e+00 4.6e+03 15 -8.32416e+04 9.564e+02 9.564e+02 9.6e-01 4.7e-04 6.9e+00 8.7e+03 16 -8.84748e+04 9.561e+02 9.561e+02 9.6e-01 3.0e-05 6.9e+00 9.1e+03 17 -8.85013e+04 9.561e+02 9.561e+02 9.6e-01 2.4e-06 6.9e+00 9.1e+03 18 -8.85044e+04 9.561e+02 9.561e+02 9.6e-01 1.1e-04 6.9e+00 9.1e+03 19 -8.85065e+04 9.561e+02 9.561e+02 9.6e-01 4.8e-06 7.7e+00 1.0e+04 20 -2.54608e+05 9.536e+02 9.536e+02 9.6e-01 9.5e-04 7.7e+00 3.9e+04 21 -2.87700e+05 9.532e+02 9.532e+02 9.5e-01 1.1e-04 7.7e+00 4.3e+04 22 -2.99104e+05 9.530e+02 9.530e+02 9.5e-01 1.9e-04 7.7e+00 4.4e+04 23 -2.99110e+05 9.530e+02 9.530e+02 9.5e-01 9.9e-07 8.5e+00 4.8e+04 24 -2.99111e+05 9.530e+02 9.530e+02 9.5e-01 1.9e-09 8.5e+00 4.8e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 1.5e-05 itn = 24 r2norm = 9.5e+02 acond = 4.8e+04 xnorm = 4.9e+05 RUsage is: 9524724 Finding optimal step size... Finished opt2. Tderiv 2.439749 wall, 2.430000 cpu Topt 4.657409 wall, 4.640000 cpu Tstep 0.437072 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.69153740177078993, 0.30846259822921002, 0.84410044802335804, 0.46194677562154485, -6.2417292023940965, 34.245572875857079, 5.0985330009053849, 6.5871395093508065, -0.21611052103300943, 9.3266782608884604, 305.83321222540724, -40.438520300063637] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.982e+02 9.982e+02 1.0e+00 4.8e-05 1 -2.44289e+00 9.979e+02 9.979e+02 1.0e+00 3.2e-02 2.0e+00 1.0e+00 2 -3.14692e+02 9.850e+02 9.850e+02 9.9e-01 2.6e-03 3.5e+00 1.5e+01 3 -3.17802e+02 9.821e+02 9.821e+02 9.8e-01 7.0e-04 3.5e+00 3.4e+01 4 -2.93518e+02 9.818e+02 9.818e+02 9.8e-01 4.0e-04 3.5e+00 5.0e+01 5 -2.97395e+02 9.816e+02 9.816e+02 9.8e-01 3.6e-04 3.5e+00 6.9e+01 6 -2.97199e+02 9.816e+02 9.816e+02 9.8e-01 5.9e-03 3.5e+00 7.4e+01 7 -3.00171e+02 9.815e+02 9.815e+02 9.8e-01 8.3e-05 4.9e+00 1.5e+02 8 -1.70313e+03 9.808e+02 9.808e+02 9.8e-01 1.3e-04 4.9e+00 5.1e+02 9 -2.06820e+03 9.806e+02 9.806e+02 9.8e-01 1.2e-04 4.9e+00 5.7e+02 10 -2.70938e+03 9.803e+02 9.803e+02 9.8e-01 1.7e-02 4.9e+00 7.2e+02 11 -2.82853e+04 9.680e+02 9.680e+02 9.7e-01 1.1e-04 6.0e+00 3.5e+03 12 -2.83979e+04 9.680e+02 9.680e+02 9.7e-01 4.1e-04 6.0e+00 3.5e+03 13 -4.55537e+04 9.584e+02 9.584e+02 9.6e-01 1.1e-05 6.0e+00 4.8e+03 14 -4.55538e+04 9.584e+02 9.584e+02 9.6e-01 5.0e-05 6.0e+00 4.8e+03 15 -7.10225e+04 9.571e+02 9.571e+02 9.6e-01 7.1e-04 6.9e+00 7.9e+03 16 -9.11872e+04 9.560e+02 9.560e+02 9.6e-01 4.4e-05 6.9e+00 9.4e+03 17 -9.12480e+04 9.560e+02 9.560e+02 9.6e-01 4.1e-06 6.9e+00 9.4e+03 18 -9.12480e+04 9.560e+02 9.560e+02 9.6e-01 1.9e-05 6.9e+00 9.4e+03 19 -9.12498e+04 9.560e+02 9.560e+02 9.6e-01 2.2e-06 7.7e+00 1.0e+04 20 -9.99846e+04 9.559e+02 9.559e+02 9.6e-01 5.0e-04 7.7e+00 1.4e+04 21 -3.07758e+05 9.529e+02 9.529e+02 9.5e-01 1.8e-05 7.7e+00 4.5e+04 22 -3.07763e+05 9.529e+02 9.529e+02 9.5e-01 1.6e-04 7.7e+00 4.5e+04 23 -3.08094e+05 9.529e+02 9.529e+02 9.5e-01 8.0e-08 8.5e+00 5.0e+04 24 -3.08094e+05 9.529e+02 9.529e+02 9.5e-01 9.0e-10 8.5e+00 5.0e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 7.3e-06 itn = 24 r2norm = 9.5e+02 acond = 5.0e+04 xnorm = 5.0e+05 RUsage is: 9617004 Finding optimal step size... Finished opt2. Tderiv 2.460036 wall, 2.450000 cpu Topt 5.026692 wall, 5.020000 cpu Tstep 0.435299 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.69499597367912891, 0.30500402632087109, 0.8440689862094698, 0.46153935005807917, -6.2544838178166247, 34.384145673633931, 5.0986891859669647, 6.5879433872771864, -0.21604815715907089, 9.3185126925925648, 308.98355183968425, -40.745462945472582] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.983e+02 9.983e+02 1.0e+00 4.7e-05 1 -2.43418e+00 9.981e+02 9.981e+02 1.0e+00 3.3e-02 2.0e+00 1.0e+00 2 -3.18239e+02 9.848e+02 9.848e+02 9.9e-01 2.5e-03 3.5e+00 1.5e+01 3 -3.20426e+02 9.819e+02 9.819e+02 9.8e-01 6.9e-04 3.5e+00 3.4e+01 4 -2.95597e+02 9.816e+02 9.816e+02 9.8e-01 4.0e-04 3.5e+00 5.1e+01 5 -2.99132e+02 9.815e+02 9.815e+02 9.8e-01 3.6e-04 3.5e+00 6.9e+01 6 -2.98834e+02 9.814e+02 9.814e+02 9.8e-01 6.7e-03 3.5e+00 7.6e+01 7 -3.00906e+02 9.813e+02 9.813e+02 9.8e-01 8.1e-05 4.9e+00 1.5e+02 8 -1.70095e+03 9.807e+02 9.807e+02 9.8e-01 1.3e-04 4.9e+00 5.1e+02 9 -2.06824e+03 9.805e+02 9.805e+02 9.8e-01 1.1e-04 4.9e+00 5.8e+02 10 -3.79733e+03 9.797e+02 9.797e+02 9.8e-01 2.8e-02 4.9e+00 9.3e+02 11 -2.90065e+04 9.680e+02 9.680e+02 9.7e-01 1.1e-04 6.0e+00 3.6e+03 12 -2.90691e+04 9.679e+02 9.679e+02 9.7e-01 2.7e-04 6.0e+00 3.6e+03 13 -4.69674e+04 9.583e+02 9.583e+02 9.6e-01 1.1e-05 6.0e+00 4.9e+03 14 -4.69735e+04 9.583e+02 9.583e+02 9.6e-01 4.7e-04 6.0e+00 4.9e+03 15 -8.62177e+04 9.562e+02 9.562e+02 9.6e-01 5.3e-04 6.9e+00 9.1e+03 16 -9.40193e+04 9.558e+02 9.558e+02 9.6e-01 1.7e-05 6.9e+00 9.7e+03 17 -9.40309e+04 9.558e+02 9.558e+02 9.6e-01 4.3e-06 6.9e+00 9.7e+03 18 -9.40326e+04 9.558e+02 9.558e+02 9.6e-01 1.9e-05 6.9e+00 9.7e+03 19 -9.40326e+04 9.558e+02 9.558e+02 9.6e-01 2.0e-06 7.7e+00 1.1e+04 20 -9.84989e+04 9.558e+02 9.558e+02 9.6e-01 3.5e-04 7.7e+00 1.3e+04 21 -3.13675e+05 9.529e+02 9.529e+02 9.5e-01 5.6e-05 7.7e+00 4.7e+04 22 -3.17373e+05 9.528e+02 9.528e+02 9.5e-01 4.1e-06 7.7e+00 4.7e+04 23 -3.17373e+05 9.528e+02 9.528e+02 9.5e-01 1.7e-06 8.3e+00 5.1e+04 24 -3.17376e+05 9.528e+02 9.528e+02 9.5e-01 1.1e-09 8.5e+00 5.1e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 8.9e-06 itn = 24 r2norm = 9.5e+02 acond = 5.1e+04 xnorm = 5.1e+05 RUsage is: 9687988 Finding optimal step size... Finished opt2. Tderiv 2.440599 wall, 2.430000 cpu Topt 4.843857 wall, 4.830000 cpu Tstep 0.436164 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.69846051584064794, 0.30153948415935206, 0.8440293586477301, 0.46113358109976582, -6.2674039489314648, 34.525011460491747, 5.0988725915173276, 6.5887929149879625, -0.21599561971795389, 9.3098044136630307, 312.15626315834919, -41.05187860834463] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.984e+02 9.984e+02 1.0e+00 4.7e-05 1 -2.42221e+00 9.982e+02 9.982e+02 1.0e+00 3.3e-02 2.0e+00 1.0e+00 2 -3.21957e+02 9.847e+02 9.847e+02 9.9e-01 2.5e-03 3.5e+00 1.5e+01 3 -3.23197e+02 9.817e+02 9.817e+02 9.8e-01 6.8e-04 3.5e+00 3.5e+01 4 -2.97804e+02 9.814e+02 9.814e+02 9.8e-01 3.9e-04 3.5e+00 5.1e+01 5 -3.01002e+02 9.813e+02 9.813e+02 9.8e-01 3.5e-04 3.5e+00 7.0e+01 6 -3.00656e+02 9.812e+02 9.812e+02 9.8e-01 9.4e-03 3.5e+00 9.2e+01 7 -3.01773e+02 9.811e+02 9.811e+02 9.8e-01 7.9e-05 4.9e+00 1.5e+02 8 -1.69814e+03 9.805e+02 9.805e+02 9.8e-01 1.3e-04 4.9e+00 5.2e+02 9 -2.07210e+03 9.804e+02 9.804e+02 9.8e-01 1.1e-04 4.9e+00 5.9e+02 10 -2.58630e+04 9.696e+02 9.696e+02 9.7e-01 3.9e-02 4.9e+00 2.8e+03 11 -2.97695e+04 9.679e+02 9.679e+02 9.7e-01 1.1e-04 6.0e+00 3.7e+03 12 -2.98164e+04 9.678e+02 9.678e+02 9.7e-01 3.1e-04 6.0e+00 3.7e+03 13 -4.84630e+04 9.581e+02 9.581e+02 9.6e-01 1.0e-05 6.0e+00 5.1e+03 14 -4.86404e+04 9.581e+02 9.581e+02 9.6e-01 2.5e-03 6.0e+00 5.1e+03 15 -9.50107e+04 9.558e+02 9.558e+02 9.6e-01 2.6e-04 6.9e+00 9.8e+03 16 -9.69154e+04 9.557e+02 9.557e+02 9.6e-01 4.1e-05 6.9e+00 1.0e+04 17 -9.69670e+04 9.557e+02 9.557e+02 9.6e-01 2.0e-06 6.9e+00 1.0e+04 18 -9.69736e+04 9.557e+02 9.557e+02 9.6e-01 7.0e-05 6.9e+00 1.0e+04 19 -9.69744e+04 9.557e+02 9.557e+02 9.6e-01 5.1e-06 7.7e+00 1.1e+04 20 -1.02951e+05 9.556e+02 9.556e+02 9.6e-01 3.9e-04 7.7e+00 1.4e+04 21 -3.20620e+05 9.528e+02 9.528e+02 9.5e-01 7.1e-05 7.7e+00 4.8e+04 22 -3.27016e+05 9.528e+02 9.528e+02 9.5e-01 1.5e-05 7.7e+00 4.9e+04 23 -3.27016e+05 9.528e+02 9.528e+02 9.5e-01 1.7e-06 8.5e+00 5.3e+04 24 -3.27020e+05 9.528e+02 9.528e+02 9.5e-01 1.8e-10 8.5e+00 5.3e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 1.5e-06 itn = 24 r2norm = 9.5e+02 acond = 5.3e+04 xnorm = 5.3e+05 RUsage is: 9802784 Finding optimal step size... Finished opt2. Tderiv 2.448239 wall, 2.440000 cpu Topt 4.779203 wall, 4.770000 cpu Tstep 0.435867 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.70193006386436718, 0.29806993613563276, 0.84398078244893693, 0.46072948328345176, -6.2804881286181198, 34.668237914389124, 5.0990837975453749, 6.5896865634703357, -0.21595121973923134, 9.3004606042163278, 315.34929225654702, -41.357310480679331] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.986e+02 9.986e+02 1.0e+00 4.7e-05 1 -2.41301e+00 9.983e+02 9.983e+02 1.0e+00 3.3e-02 2.0e+00 1.0e+00 2 -3.25535e+02 9.845e+02 9.845e+02 9.9e-01 2.5e-03 3.5e+00 1.5e+01 3 -3.25804e+02 9.816e+02 9.816e+02 9.8e-01 6.8e-04 3.5e+00 3.5e+01 4 -2.99852e+02 9.813e+02 9.813e+02 9.8e-01 3.9e-04 3.5e+00 5.2e+01 5 -3.02717e+02 9.811e+02 9.811e+02 9.8e-01 3.4e-04 3.5e+00 7.1e+01 6 -3.02896e+02 9.810e+02 9.810e+02 9.8e-01 5.0e-03 3.5e+00 1.0e+02 7 -3.02480e+02 9.810e+02 9.810e+02 9.8e-01 7.7e-05 4.9e+00 1.5e+02 8 -1.69335e+03 9.804e+02 9.804e+02 9.8e-01 1.3e-04 4.9e+00 5.3e+02 9 -2.07784e+03 9.802e+02 9.802e+02 9.8e-01 9.9e-05 4.9e+00 5.9e+02 10 -3.02400e+04 9.679e+02 9.679e+02 9.7e-01 1.1e-02 4.9e+00 3.1e+03 11 -3.05369e+04 9.678e+02 9.678e+02 9.7e-01 9.9e-05 6.0e+00 3.8e+03 12 -3.09890e+04 9.676e+02 9.676e+02 9.7e-01 8.8e-04 6.0e+00 3.8e+03 13 -4.99903e+04 9.580e+02 9.580e+02 9.6e-01 1.0e-05 6.0e+00 5.2e+03 14 -5.03470e+04 9.579e+02 9.579e+02 9.6e-01 3.4e-03 6.0e+00 5.2e+03 15 -6.66667e+04 9.572e+02 9.572e+02 9.6e-01 6.5e-04 6.9e+00 7.7e+03 16 -9.94701e+04 9.556e+02 9.556e+02 9.6e-01 1.2e-04 6.9e+00 1.0e+04 17 -9.99779e+04 9.555e+02 9.555e+02 9.6e-01 3.5e-06 6.9e+00 1.0e+04 18 -9.99797e+04 9.555e+02 9.555e+02 9.6e-01 1.4e-05 6.9e+00 1.0e+04 19 -9.99797e+04 9.555e+02 9.555e+02 9.6e-01 1.9e-06 7.7e+00 1.1e+04 20 -2.23603e+05 9.540e+02 9.540e+02 9.6e-01 1.2e-03 7.7e+00 3.7e+04 21 -3.36589e+05 9.527e+02 9.527e+02 9.5e-01 1.8e-05 7.7e+00 5.1e+04 22 -3.36971e+05 9.527e+02 9.527e+02 9.5e-01 2.4e-04 7.7e+00 5.1e+04 23 -3.36982e+05 9.527e+02 9.527e+02 9.5e-01 1.3e-06 8.5e+00 5.5e+04 24 -3.36983e+05 9.527e+02 9.527e+02 9.5e-01 9.5e-10 8.5e+00 5.5e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 7.7e-06 itn = 24 r2norm = 9.5e+02 acond = 5.5e+04 xnorm = 5.4e+05 RUsage is: 9896400 Finding optimal step size... Finished opt2. Tderiv 2.458439 wall, 2.450000 cpu Topt 4.617099 wall, 4.600000 cpu Tstep 0.442265 wall, 0.450000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.70540523325006754, 0.2945947667499324, 0.84392393365663187, 0.46032676443640413, -6.2937395252401922, 34.813859191048614, 5.0993224839812781, 6.5906217329987316, -0.2159141260273692, 9.2905362393971345, 318.56487831293992, -41.662073447020774] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.987e+02 9.987e+02 1.0e+00 4.7e-05 1 -2.40185e+00 9.984e+02 9.984e+02 1.0e+00 3.3e-02 2.0e+00 1.0e+00 2 -3.29223e+02 9.844e+02 9.844e+02 9.9e-01 2.5e-03 3.5e+00 1.5e+01 3 -3.28495e+02 9.814e+02 9.814e+02 9.8e-01 6.7e-04 3.5e+00 3.5e+01 4 -3.01967e+02 9.811e+02 9.811e+02 9.8e-01 3.8e-04 3.5e+00 5.2e+01 5 -3.04501e+02 9.810e+02 9.810e+02 9.8e-01 3.4e-04 3.5e+00 7.1e+01 6 -3.02915e+02 9.809e+02 9.809e+02 9.8e-01 8.7e-03 3.5e+00 9.7e+01 7 -3.03246e+02 9.808e+02 9.808e+02 9.8e-01 7.4e-05 4.9e+00 1.5e+02 8 -1.68726e+03 9.802e+02 9.802e+02 9.8e-01 1.3e-04 4.9e+00 5.3e+02 9 -2.08609e+03 9.801e+02 9.801e+02 9.8e-01 9.3e-05 4.9e+00 6.0e+02 10 -2.01198e+04 9.725e+02 9.725e+02 9.7e-01 5.5e-02 4.9e+00 2.5e+03 11 -3.13445e+04 9.677e+02 9.677e+02 9.7e-01 9.6e-05 6.0e+00 3.9e+03 12 -3.24471e+04 9.671e+02 9.671e+02 9.7e-01 1.3e-03 6.0e+00 4.0e+03 13 -5.15841e+04 9.578e+02 9.578e+02 9.6e-01 9.8e-06 6.0e+00 5.4e+03 14 -5.16378e+04 9.578e+02 9.578e+02 9.6e-01 1.3e-03 6.0e+00 5.4e+03 15 -9.15283e+04 9.559e+02 9.559e+02 9.6e-01 4.9e-04 6.9e+00 9.8e+03 16 -1.03100e+05 9.554e+02 9.554e+02 9.6e-01 2.3e-05 6.9e+00 1.1e+04 17 -1.03115e+05 9.554e+02 9.554e+02 9.6e-01 2.0e-06 6.9e+00 1.1e+04 18 -1.03119e+05 9.554e+02 9.554e+02 9.6e-01 2.0e-05 6.9e+00 1.1e+04 19 -1.03119e+05 9.554e+02 9.554e+02 9.6e-01 3.2e-06 7.7e+00 1.2e+04 20 -2.08644e+05 9.542e+02 9.542e+02 9.6e-01 9.7e-04 7.7e+00 3.6e+04 21 -2.80989e+05 9.534e+02 9.534e+02 9.5e-01 1.9e-04 7.7e+00 4.5e+04 22 -3.46990e+05 9.526e+02 9.526e+02 9.5e-01 8.5e-06 7.7e+00 5.3e+04 23 -3.46990e+05 9.526e+02 9.526e+02 9.5e-01 2.1e-05 7.8e+00 5.3e+04 24 -3.47056e+05 9.526e+02 9.526e+02 9.5e-01 2.8e-09 8.5e+00 5.8e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 2.2e-05 itn = 24 r2norm = 9.5e+02 acond = 5.8e+04 xnorm = 5.5e+05 RUsage is: 9989724 Finding optimal step size... Finished opt2. Tderiv 2.454654 wall, 2.440000 cpu Topt 5.091524 wall, 5.080000 cpu Tstep 0.433972 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.7088837251426322, 0.29111627485736774, 0.84385899098377559, 0.45992563252712498, -6.3071705019244586, 34.961943604478442, 5.0995874922195625, 6.5915964628341488, -0.21588490128801882, 9.2799692731524051, 321.79830155593618, -41.965611969092755] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.988e+02 9.988e+02 1.0e+00 4.7e-05 1 -2.39717e+00 9.985e+02 9.985e+02 1.0e+00 3.4e-02 2.0e+00 1.0e+00 2 -3.32561e+02 9.842e+02 9.842e+02 9.9e-01 2.5e-03 3.5e+00 1.5e+01 3 -3.30814e+02 9.812e+02 9.812e+02 9.8e-01 6.6e-04 3.5e+00 3.6e+01 4 -3.03733e+02 9.809e+02 9.809e+02 9.8e-01 3.7e-04 3.5e+00 5.2e+01 5 -3.05937e+02 9.808e+02 9.808e+02 9.8e-01 3.3e-04 3.5e+00 7.2e+01 6 -3.05405e+02 9.808e+02 9.808e+02 9.8e-01 4.6e-03 3.5e+00 7.5e+01 7 -3.03660e+02 9.806e+02 9.806e+02 9.8e-01 7.2e-05 4.9e+00 1.5e+02 8 -1.67761e+03 9.801e+02 9.801e+02 9.8e-01 1.4e-04 4.9e+00 5.4e+02 9 -2.09368e+03 9.799e+02 9.799e+02 9.8e-01 8.8e-05 4.9e+00 6.1e+02 10 -2.71872e+04 9.697e+02 9.697e+02 9.7e-01 4.2e-02 4.9e+00 3.0e+03 11 -3.21412e+04 9.676e+02 9.676e+02 9.7e-01 9.4e-05 6.0e+00 4.0e+03 12 -3.25828e+04 9.674e+02 9.674e+02 9.7e-01 7.6e-04 6.0e+00 4.0e+03 13 -5.31777e+04 9.577e+02 9.577e+02 9.6e-01 9.6e-06 6.0e+00 5.5e+03 14 -5.31957e+04 9.577e+02 9.577e+02 9.6e-01 7.6e-04 6.0e+00 5.5e+03 15 -9.30789e+04 9.558e+02 9.558e+02 9.6e-01 5.7e-04 6.9e+00 1.0e+04 16 -1.05954e+05 9.553e+02 9.553e+02 9.6e-01 8.9e-05 6.9e+00 1.1e+04 17 -1.06246e+05 9.552e+02 9.552e+02 9.6e-01 1.6e-06 6.9e+00 1.1e+04 18 -1.06254e+05 9.552e+02 9.552e+02 9.6e-01 1.9e-04 6.9e+00 1.1e+04 19 -1.06283e+05 9.552e+02 9.552e+02 9.6e-01 1.0e-05 7.7e+00 1.2e+04 20 -3.08674e+05 9.531e+02 9.531e+02 9.5e-01 7.0e-04 7.7e+00 4.9e+04 21 -3.36775e+05 9.528e+02 9.528e+02 9.5e-01 1.1e-04 7.7e+00 5.2e+04 22 -3.56903e+05 9.525e+02 9.525e+02 9.5e-01 1.3e-04 7.7e+00 5.4e+04 23 -3.56907e+05 9.525e+02 9.525e+02 9.5e-01 7.7e-06 8.5e+00 6.0e+04 24 -3.56982e+05 9.525e+02 9.525e+02 9.5e-01 2.3e-09 8.5e+00 6.0e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 1.9e-05 itn = 24 r2norm = 9.5e+02 acond = 6.0e+04 xnorm = 5.7e+05 RUsage is: 10083264 Finding optimal step size... Finished opt2. Tderiv 2.429991 wall, 2.430000 cpu Topt 4.789277 wall, 4.770000 cpu Tstep 0.437736 wall, 0.430000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.71236463746723944, 0.28763536253276062, 0.84378504375203456, 0.45952568860167942, -6.320777136586039, 35.11254687598165, 5.0998799419642094, 6.5926130418410844, -0.21586274380497497, 9.268677321800471, 325.04787465001658, -42.267517948500156] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.989e+02 9.989e+02 1.0e+00 4.6e-05 1 -2.39475e+00 9.986e+02 9.986e+02 1.0e+00 3.4e-02 2.0e+00 1.0e+00 2 -3.35768e+02 9.840e+02 9.840e+02 9.9e-01 2.5e-03 3.5e+00 1.6e+01 3 -3.32980e+02 9.810e+02 9.810e+02 9.8e-01 6.6e-04 3.5e+00 3.6e+01 4 -3.05351e+02 9.807e+02 9.807e+02 9.8e-01 3.7e-04 3.5e+00 5.3e+01 5 -3.07225e+02 9.806e+02 9.806e+02 9.8e-01 3.2e-04 3.5e+00 7.2e+01 6 -3.06108e+02 9.805e+02 9.805e+02 9.8e-01 9.2e-03 3.5e+00 9.5e+01 7 -3.03930e+02 9.805e+02 9.805e+02 9.8e-01 7.0e-05 4.9e+00 1.5e+02 8 -1.66569e+03 9.799e+02 9.799e+02 9.8e-01 1.4e-04 4.9e+00 5.4e+02 9 -2.10206e+03 9.798e+02 9.798e+02 9.8e-01 8.3e-05 4.9e+00 6.2e+02 10 -1.24487e+04 9.757e+02 9.757e+02 9.8e-01 5.3e-02 4.9e+00 2.0e+03 11 -3.29541e+04 9.675e+02 9.675e+02 9.7e-01 1.1e-04 6.0e+00 4.1e+03 12 -3.29936e+04 9.675e+02 9.675e+02 9.7e-01 1.7e-04 6.0e+00 4.1e+03 13 -5.48085e+04 9.575e+02 9.575e+02 9.6e-01 9.3e-06 6.0e+00 5.7e+03 14 -5.48098e+04 9.575e+02 9.575e+02 9.6e-01 2.0e-04 6.0e+00 5.7e+03 15 -6.12012e+04 9.572e+02 9.572e+02 9.6e-01 4.3e-04 6.9e+00 7.3e+03 16 -1.09100e+05 9.551e+02 9.551e+02 9.6e-01 9.2e-05 6.9e+00 1.1e+04 17 -1.09452e+05 9.551e+02 9.551e+02 9.6e-01 6.7e-06 6.9e+00 1.1e+04 18 -1.09455e+05 9.551e+02 9.551e+02 9.6e-01 5.9e-05 6.9e+00 1.1e+04 19 -1.09455e+05 9.551e+02 9.551e+02 9.6e-01 1.4e-06 7.7e+00 1.3e+04 20 -1.09570e+05 9.551e+02 9.551e+02 9.6e-01 4.6e-05 7.7e+00 1.3e+04 21 -3.62310e+05 9.525e+02 9.525e+02 9.5e-01 6.1e-05 7.7e+00 5.6e+04 22 -3.67027e+05 9.525e+02 9.525e+02 9.5e-01 2.0e-04 7.7e+00 5.6e+04 23 -3.67036e+05 9.525e+02 9.525e+02 9.5e-01 5.5e-06 8.5e+00 6.2e+04 24 -3.67097e+05 9.525e+02 9.525e+02 9.5e-01 6.6e-09 8.5e+00 6.2e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.5e+02 anorm = 8.5e+00 arnorm = 5.4e-05 itn = 24 r2norm = 9.5e+02 acond = 6.2e+04 xnorm = 5.8e+05 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 2.450349 wall, 2.450000 cpu Topt 4.677786 wall, 4.660000 cpu Tstep 0.435856 wall, 0.430000 cpu End of psf optimisation {'images': 0, 'catalog': 1} sources found: [PointSource(RaDecPos[212.58627001650117, 17.670805010685203], Mags[6.0]), PointSource(RaDecPos[212.54012401201084, 17.677280004436525], Mags[6.0]), PointSource(RaDecPos[212.46815999735401, 17.66947000904743], Mags[6.0]), PointSource(RaDecPos[212.51582099859775, 17.785281989539037], Mags[6.0]), PointSource(RaDecPos[212.45068801466374, 17.784976997112764], Mags[6.0]), PointSource(RaDecPos[212.42721400019389, 17.781981010080656], Mags[6.0]), PointSource(RaDecPos[212.5722629890717, 17.799590992832062], Mags[6.0]), PointSource(RaDecPos[212.5578069949521, 17.789461012639183], Mags[6.0]), PointSource(RaDecPos[212.52463401400419, 17.780489003407968], Mags[6.0]), PointSource(RaDecPos[212.51807500356608, 17.741745011210742], Mags[6.0]), PointSource(RaDecPos[212.51586700837166, 17.735043989856514], Mags[6.0]), PointSource(RaDecPos[212.51471198981281, 17.73531298613922], Mags[6.0]), PointSource(RaDecPos[212.4962349898471, 17.696067996973184], Mags[6.0]), PointSource(RaDecPos[212.49314101475912, 17.725029004741245], Mags[6.0]), PointSource(RaDecPos[212.48538999242737, 17.723759003021769], Mags[6.0]), PointSource(RaDecPos[212.48470099549996, 17.760330006145495], Mags[6.0]), PointSource(RaDecPos[212.47450000591533, 17.726773986820934], Mags[6.0]), PointSource(RaDecPos[212.47564598640423, 17.777065000269854], Mags[6.0]), PointSource(RaDecPos[212.43680301036275, 17.685515998510841], Mags[6.0]), PointSource(RaDecPos[212.42973001531314, 17.694037995605193], Mags[6.0]), PointSource(RaDecPos[212.43464400787943, 17.720620996504572], Mags[6.0]), PointSource(RaDecPos[212.42691898952171, 17.708461988404846], Mags[6.0]), PointSource(RaDecPos[212.59497599750242, 17.743238011340846], Mags[6.0]), PointSource(RaDecPos[212.58645900896661, 17.719195995048278], Mags[6.0]), PointSource(RaDecPos[212.57713401568017, 17.718734992303755], Mags[6.0]), PointSource(RaDecPos[212.56955300818728, 17.711691004302544], Mags[6.0]), PointSource(RaDecPos[212.57904400625549, 17.75922000237879], Mags[6.0]), PointSource(RaDecPos[212.56266101012173, 17.722445987390898], Mags[6.0]), PointSource(RaDecPos[212.54820401059993, 17.698802987231648], Mags[6.0]), PointSource(RaDecPos[212.55521599662887, 17.751168990141483], Mags[6.0]), PointSource(RaDecPos[212.53847200407657, 17.717024007182069], Mags[6.0]), PointSource(RaDecPos[212.54250199282387, 17.745463990445494], Mags[6.0]), PointSource(RaDecPos[212.54448500046382, 17.760971004870477], Mags[6.0]), PointSource(RaDecPos[212.53583800620856, 17.748441997213277], Mags[6.0]), PointSource(RaDecPos[212.53221999343231, 17.772908989386686], Mags[6.0]), PointSource(RaDecPos[212.53093099961634, 17.767281995301154], Mags[6.0]), PointSource(RaDecPos[212.5274410040719, 17.753434988597618], Mags[6.0]), PointSource(RaDecPos[212.51508898959537, 17.696581004013861], Mags[6.0]), PointSource(RaDecPos[212.51342699558697, 17.693769005202373], Mags[6.0]), PointSource(RaDecPos[212.52046399305456, 17.732809008556668], Mags[6.0]), PointSource(RaDecPos[212.51825599392259, 17.733864002083305], Mags[6.0]), PointSource(RaDecPos[212.42721400019389, 17.781981010080656], Mags[6.0]), PointSource(RaDecPos[212.42691898952171, 17.708461988404846], Mags[6.0]), PointSource(RaDecPos[212.54624699062146, 17.764526012050251], Mags[6.0]), PointSource(RaDecPos[212.50332198592073, 17.766808009104651], Mags[6.0]), PointSource(RaDecPos[212.53093099961634, 17.767281995301154], Mags[6.0]), PointSource(RaDecPos[212.53221999343231, 17.772908989386686], Mags[6.0]), PointSource(RaDecPos[212.47564598640423, 17.777065000269854], Mags[6.0]), PointSource(RaDecPos[212.52463401400419, 17.780489003407968], Mags[6.0]), PointSource(RaDecPos[212.45068801466374, 17.784976997112764], Mags[6.0]), PointSource(RaDecPos[212.51582099859775, 17.785281989539037], Mags[6.0]), PointSource(RaDecPos[212.5578069949521, 17.789461012639183], Mags[6.0]), PointSource(RaDecPos[212.52393701103111, 17.790154990159586], Mags[6.0]), PointSource(RaDecPos[212.5722629890717, 17.799590992832062], Mags[6.0]), PointSource(RaDecPos[212.46815999735401, 17.66947000904743], Mags[6.0]), PointSource(RaDecPos[212.58627001650117, 17.670805010685203], Mags[6.0]), PointSource(RaDecPos[212.54012401201084, 17.677280004436525], Mags[6.0]), PointSource(RaDecPos[212.43680301036275, 17.685515998510841], Mags[6.0]), PointSource(RaDecPos[212.51342699558697, 17.693769005202373], Mags[6.0]), PointSource(RaDecPos[212.42973001531314, 17.694037995605193], Mags[6.0]), PointSource(RaDecPos[212.4962349898471, 17.696067996973184], Mags[6.0]), PointSource(RaDecPos[212.51508898959537, 17.696581004013861], Mags[6.0]), PointSource(RaDecPos[212.54820401059993, 17.698802987231648], Mags[6.0]), PointSource(RaDecPos[212.56955300818728, 17.711691004302544], Mags[6.0]), PointSource(RaDecPos[212.53847200407657, 17.717024007182069], Mags[6.0]), PointSource(RaDecPos[212.57713401568017, 17.718734992303755], Mags[6.0]), PointSource(RaDecPos[212.58645900896661, 17.719195995048278], Mags[6.0]), PointSource(RaDecPos[212.43464400787943, 17.720620996504572], Mags[6.0]), PointSource(RaDecPos[212.56266101012173, 17.722445987390898], Mags[6.0]), PointSource(RaDecPos[212.48538999242737, 17.723759003021769], Mags[6.0]), PointSource(RaDecPos[212.49314101475912, 17.725029004741245], Mags[6.0]), PointSource(RaDecPos[212.47450000591533, 17.726773986820934], Mags[6.0]), PointSource(RaDecPos[212.52046399305456, 17.732809008556668], Mags[6.0]), PointSource(RaDecPos[212.51825599392259, 17.733864002083305], Mags[6.0]), PointSource(RaDecPos[212.51586700837166, 17.735043989856514], Mags[6.0]), PointSource(RaDecPos[212.51471198981281, 17.73531298613922], Mags[6.0]), PointSource(RaDecPos[212.51807500356608, 17.741745011210742], Mags[6.0]), PointSource(RaDecPos[212.59497599750242, 17.743238011340846], Mags[6.0]), PointSource(RaDecPos[212.54250199282387, 17.745463990445494], Mags[6.0]), PointSource(RaDecPos[212.53583800620856, 17.748441997213277], Mags[6.0]), PointSource(RaDecPos[212.55521599662887, 17.751168990141483], Mags[6.0]), PointSource(RaDecPos[212.5274410040719, 17.753434988597618], Mags[6.0]), PointSource(RaDecPos[212.57904400625549, 17.75922000237879], Mags[6.0]), PointSource(RaDecPos[212.48470099549996, 17.760330006145495], Mags[6.0]), PointSource(RaDecPos[212.54448500046382, 17.760971004870477], Mags[6.0])] STEP 0: And the thawed params for brightness optimisation are: catalog.source0.brightness.r catalog.source1.brightness.r catalog.source2.brightness.r catalog.source3.brightness.r catalog.source4.brightness.r catalog.source5.brightness.r catalog.source6.brightness.r catalog.source7.brightness.r catalog.source8.brightness.r catalog.source9.brightness.r catalog.source10.brightness.r catalog.source11.brightness.r catalog.source12.brightness.r catalog.source13.brightness.r catalog.source14.brightness.r catalog.source15.brightness.r catalog.source16.brightness.r catalog.source17.brightness.r catalog.source18.brightness.r catalog.source19.brightness.r catalog.source20.brightness.r catalog.source21.brightness.r catalog.source22.brightness.r catalog.source23.brightness.r catalog.source24.brightness.r catalog.source25.brightness.r catalog.source26.brightness.r catalog.source27.brightness.r catalog.source28.brightness.r catalog.source29.brightness.r catalog.source30.brightness.r catalog.source31.brightness.r catalog.source32.brightness.r catalog.source33.brightness.r catalog.source34.brightness.r catalog.source35.brightness.r catalog.source36.brightness.r catalog.source37.brightness.r catalog.source38.brightness.r catalog.source39.brightness.r catalog.source40.brightness.r catalog.source41.brightness.r catalog.source42.brightness.r catalog.source43.brightness.r catalog.source44.brightness.r catalog.source45.brightness.r catalog.source46.brightness.r catalog.source47.brightness.r catalog.source48.brightness.r catalog.source49.brightness.r catalog.source50.brightness.r catalog.source51.brightness.r catalog.source52.brightness.r catalog.source53.brightness.r catalog.source54.brightness.r catalog.source55.brightness.r catalog.source56.brightness.r catalog.source57.brightness.r catalog.source58.brightness.r catalog.source59.brightness.r catalog.source60.brightness.r catalog.source61.brightness.r catalog.source62.brightness.r catalog.source63.brightness.r catalog.source64.brightness.r catalog.source65.brightness.r catalog.source66.brightness.r catalog.source67.brightness.r catalog.source68.brightness.r catalog.source69.brightness.r catalog.source70.brightness.r catalog.source71.brightness.r catalog.source72.brightness.r catalog.source73.brightness.r catalog.source74.brightness.r catalog.source75.brightness.r catalog.source76.brightness.r catalog.source77.brightness.r catalog.source78.brightness.r catalog.source79.brightness.r catalog.source80.brightness.r catalog.source81.brightness.r catalog.source82.brightness.r catalog.source83.brightness.r catalog.source84.brightness.r Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.441e+02 9.441e+02 1.0e+00 5.4e-04 1 -1.93958e+01 8.807e+02 8.807e+02 9.3e-01 2.0e-02 1.4e+00 1.0e+00 2 -1.96585e+01 8.805e+02 8.805e+02 9.3e-01 4.7e-03 2.0e+00 2.0e+00 3 -1.95916e+01 8.805e+02 8.805e+02 9.3e-01 1.2e-04 2.3e+00 3.2e+00 4 -1.95898e+01 8.805e+02 8.805e+02 9.3e-01 9.2e-06 2.7e+00 4.2e+00 5 -1.95900e+01 8.805e+02 8.805e+02 9.3e-01 1.9e-08 3.0e+00 5.2e+00 6 -1.95900e+01 8.805e+02 8.805e+02 9.3e-01 6.6e-12 3.3e+00 6.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.8e+02 anorm = 3.3e+00 arnorm = 1.9e-08 itn = 6 r2norm = 8.8e+02 acond = 6.2e+00 xnorm = 2.4e+02 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.022404 wall, 0.020000 cpu Topt 0.235850 wall, 0.240000 cpu Tstep 0.224547 wall, 0.230000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.138e+02 9.138e+02 1.0e+00 4.2e-04 1 -1.65131e+01 8.806e+02 8.806e+02 9.6e-01 1.6e-02 1.4e+00 1.0e+00 2 -1.68112e+01 8.805e+02 8.805e+02 9.6e-01 4.1e-03 2.0e+00 2.0e+00 3 -1.67297e+01 8.805e+02 8.805e+02 9.6e-01 9.0e-05 2.3e+00 3.2e+00 4 -1.67279e+01 8.805e+02 8.805e+02 9.6e-01 6.8e-06 2.7e+00 4.2e+00 5 -1.67282e+01 8.805e+02 8.805e+02 9.6e-01 9.7e-09 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.8e+02 anorm = 3.0e+00 arnorm = 2.6e-05 itn = 5 r2norm = 8.8e+02 acond = 5.2e+00 xnorm = 1.7e+02 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.023072 wall, 0.020000 cpu Topt 0.209978 wall, 0.210000 cpu Tstep 0.277615 wall, 0.280000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 8.847e+02 8.847e+02 1.0e+00 1.6e-04 1 -4.13045e+00 8.805e+02 8.805e+02 1.0e+00 4.4e-03 1.4e+00 1.0e+00 2 -4.17133e+00 8.805e+02 8.805e+02 1.0e+00 1.1e-03 2.0e+00 2.0e+00 3 -4.15992e+00 8.805e+02 8.805e+02 1.0e+00 3.2e-05 2.3e+00 3.2e+00 4 -4.15952e+00 8.805e+02 8.805e+02 1.0e+00 2.5e-06 2.7e+00 4.2e+00 5 -4.15958e+00 8.805e+02 8.805e+02 1.0e+00 7.9e-09 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.8e+02 anorm = 3.0e+00 arnorm = 2.1e-05 itn = 5 r2norm = 8.8e+02 acond = 5.2e+00 xnorm = 6.1e+01 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.023119 wall, 0.020000 cpu Topt 0.210114 wall, 0.210000 cpu Tstep 0.302065 wall, 0.300000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 8.805e+02 8.805e+02 1.0e+00 2.2e-05 1 -6.68347e-01 8.805e+02 8.805e+02 1.0e+00 6.8e-04 1.4e+00 1.0e+00 2 -6.76902e-01 8.805e+02 8.805e+02 1.0e+00 1.7e-04 2.0e+00 2.0e+00 3 -6.74591e-01 8.805e+02 8.805e+02 1.0e+00 4.3e-06 2.3e+00 3.2e+00 4 -6.74534e-01 8.805e+02 8.805e+02 1.0e+00 3.1e-07 2.7e+00 4.2e+00 5 -6.74544e-01 8.805e+02 8.805e+02 1.0e+00 5.1e-10 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.8e+02 anorm = 3.0e+00 arnorm = 1.4e-06 itn = 5 r2norm = 8.8e+02 acond = 5.2e+00 xnorm = 8.4e+00 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.022955 wall, 0.020000 cpu Topt 0.212047 wall, 0.210000 cpu Tstep 0.303042 wall, 0.300000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 8.805e+02 8.805e+02 1.0e+00 6.9e-06 1 -1.51428e-01 8.805e+02 8.805e+02 1.0e+00 1.6e-04 1.4e+00 1.0e+00 2 -1.52388e-01 8.805e+02 8.805e+02 1.0e+00 3.8e-05 2.0e+00 2.0e+00 3 -1.52134e-01 8.805e+02 8.805e+02 1.0e+00 9.8e-07 2.3e+00 3.2e+00 4 -1.52128e-01 8.805e+02 8.805e+02 1.0e+00 7.2e-08 2.7e+00 4.2e+00 5 -1.52129e-01 8.805e+02 8.805e+02 1.0e+00 1.2e-10 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.8e+02 anorm = 3.0e+00 arnorm = 3.1e-07 itn = 5 r2norm = 8.8e+02 acond = 5.2e+00 xnorm = 2.7e+00 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.023019 wall, 0.020000 cpu Topt 0.213160 wall, 0.220000 cpu Tstep 0.327671 wall, 0.320000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 8.788e+02 8.788e+02 1.0e+00 1.1e-06 1 -3.50715e-02 8.788e+02 8.788e+02 1.0e+00 3.6e-05 1.4e+00 1.0e+00 2 -3.55553e-02 8.788e+02 8.788e+02 1.0e+00 8.8e-06 2.0e+00 2.0e+00 3 -3.54242e-02 8.788e+02 8.788e+02 1.0e+00 2.3e-07 2.3e+00 3.2e+00 4 -3.54209e-02 8.788e+02 8.788e+02 1.0e+00 1.6e-08 2.7e+00 4.2e+00 5 -3.54215e-02 8.788e+02 8.788e+02 1.0e+00 2.7e-11 3.0e+00 5.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.8e+02 anorm = 3.0e+00 arnorm = 7.2e-08 itn = 5 r2norm = 8.8e+02 acond = 5.2e+00 xnorm = 4.2e-01 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.022955 wall, 0.020000 cpu Topt 0.210671 wall, 0.210000 cpu Tstep 0.352072 wall, 0.360000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 8.788e+02 8.788e+02 1.0e+00 2.6e-07 1 -8.22087e-03 8.788e+02 8.788e+02 1.0e+00 8.4e-06 1.4e+00 1.0e+00 2 -8.33427e-03 8.788e+02 8.788e+02 1.0e+00 2.1e-06 2.0e+00 2.0e+00 3 -8.30354e-03 8.788e+02 8.788e+02 1.0e+00 5.3e-08 2.3e+00 3.2e+00 4 -8.30278e-03 8.788e+02 8.788e+02 1.0e+00 3.8e-09 2.7e+00 4.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.8e+02 anorm = 2.7e+00 arnorm = 9.0e-06 itn = 4 r2norm = 8.8e+02 acond = 4.2e+00 xnorm = 9.9e-02 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.022935 wall, 0.020000 cpu Topt 0.197376 wall, 0.190000 cpu Tstep 0.351421 wall, 0.350000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 85 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 170 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 8.788e+02 8.788e+02 1.0e+00 6.1e-08 1 -1.93049e-03 8.788e+02 8.788e+02 1.0e+00 2.0e-06 1.4e+00 1.0e+00 2 -1.95711e-03 8.788e+02 8.788e+02 1.0e+00 4.8e-07 2.0e+00 2.0e+00 3 -1.94990e-03 8.788e+02 8.788e+02 1.0e+00 1.2e-08 2.3e+00 3.2e+00 4 -1.94972e-03 8.788e+02 8.788e+02 1.0e+00 9.0e-10 2.7e+00 4.2e+00 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 8.8e+02 anorm = 2.7e+00 arnorm = 2.1e-06 itn = 4 r2norm = 8.8e+02 acond = 4.2e+00 xnorm = 2.3e-02 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.022892 wall, 0.020000 cpu Topt 0.196966 wall, 0.200000 cpu Tstep 0.351102 wall, 0.350000 cpu STEP 1 Source 0 has initial probability: -2048068.08242 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.58627, 17.67081) with Mags: r=3.57751 brightness is Mags: r=3.57751 brightness is Mags: r=1.57751 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.58627, 17.67081) with Mags: r=1.57751 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source0.shape.re', 'catalog.source0.shape.ab', 'catalog.source0.shape.phi', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.686e+02 9.686e+02 1.0e+00 3.8e-05 1 2.62681e+01 9.678e+02 9.678e+02 1.0e+00 1.8e-02 9.2e-01 1.0e+00 2 4.93905e+01 9.676e+02 9.676e+02 1.0e+00 1.7e-02 1.3e+00 2.2e+00 3 6.82836e+01 9.674e+02 9.674e+02 1.0e+00 3.3e-03 2.0e+00 4.8e+00 4 7.43179e+01 9.673e+02 9.673e+02 1.0e+00 1.7e-03 2.2e+00 6.1e+00 5 8.57423e+01 9.673e+02 9.673e+02 1.0e+00 3.5e-04 2.2e+00 1.0e+01 6 8.57708e+01 9.673e+02 9.673e+02 1.0e+00 1.6e-05 2.7e+00 1.2e+01 7 8.57709e+01 9.673e+02 9.673e+02 1.0e+00 9.8e-08 3.1e+00 1.4e+01 8 8.57709e+01 9.673e+02 9.673e+02 1.0e+00 1.1e-08 3.3e+00 1.6e+01 9 8.57709e+01 9.673e+02 9.673e+02 1.0e+00 2.5e-09 3.6e+00 1.7e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.7e+02 anorm = 3.6e+00 arnorm = 8.6e-06 itn = 9 r2norm = 9.7e+02 acond = 1.7e+01 xnorm = 1.1e+02 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.031604 wall, 0.030000 cpu Topt 0.369002 wall, 0.380000 cpu Tstep 0.417754 wall, 0.400000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.58627, 17.67081) with Mags: r=11.1048 and Galaxy Shape: re=0.03, ab=0.03, phi=52.2 Source 0 has final probability: -2048077.03715 Probability difference is: -8.95473088976 Source 1 has initial probability: -2048077.03718 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.54012, 17.67728) with Mags: r=4.43965 brightness is Mags: r=4.43965 brightness is Mags: r=2.43965 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.54012, 17.67728) with Mags: r=2.43965 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source1.shape.re', 'catalog.source1.shape.ab', 'catalog.source1.shape.phi', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.272e+03 1.272e+03 1.0e+00 2.9e-05 1 -4.88719e+00 1.271e+03 1.271e+03 1.0e+00 4.5e-02 9.3e-01 1.0e+00 2 -4.84116e+00 1.269e+03 1.269e+03 1.0e+00 2.4e-02 1.7e+00 3.4e+00 3 7.52216e+00 1.267e+03 1.267e+03 1.0e+00 1.2e-02 2.0e+00 6.6e+00 4 -2.89410e+00 1.267e+03 1.267e+03 1.0e+00 2.3e-03 2.4e+00 8.5e+00 5 -2.01005e+00 1.267e+03 1.267e+03 1.0e+00 1.2e-03 2.5e+00 9.6e+00 6 -2.11593e+00 1.267e+03 1.267e+03 1.0e+00 2.3e-06 2.6e+00 1.1e+01 7 -2.11596e+00 1.267e+03 1.267e+03 1.0e+00 9.6e-08 3.0e+00 1.3e+01 8 -2.11596e+00 1.267e+03 1.267e+03 1.0e+00 1.5e-09 3.4e+00 1.5e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.3e+03 anorm = 3.4e+00 arnorm = 6.3e-06 itn = 8 r2norm = 1.3e+03 acond = 1.5e+01 xnorm = 3.6e+02 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.035866 wall, 0.030000 cpu Topt 0.392077 wall, 0.400000 cpu Tstep 0.262501 wall, 0.260000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.54012, 17.67728) with Mags: r=2.19154 and Galaxy Shape: re=40.55, ab=0.78, phi=-29.9 Source 1 has final probability: -2048094.40749 Probability difference is: -17.3703110043 Source 2 has initial probability: -2050453.26822 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.46816, 17.66947) with Mags: r=5.07224 brightness is Mags: r=5.07224 brightness is Mags: r=3.07224 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.46816, 17.66947) with Mags: r=3.07224 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source2.shape.re', 'catalog.source2.shape.ab', 'catalog.source2.shape.phi', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.070e+03 1.070e+03 1.0e+00 8.7e-05 1 -2.14946e+00 1.067e+03 1.067e+03 1.0e+00 9.8e-03 1.4e+00 1.0e+00 2 -2.13580e+00 1.067e+03 1.067e+03 1.0e+00 1.2e-02 1.6e+00 2.6e+00 3 -2.07006e+00 1.067e+03 1.067e+03 1.0e+00 6.3e-03 2.1e+00 4.9e+00 4 -2.10307e+00 1.067e+03 1.067e+03 1.0e+00 2.3e-03 2.4e+00 7.2e+00 5 -2.10057e+00 1.067e+03 1.067e+03 1.0e+00 2.4e-03 2.5e+00 9.7e+00 6 -2.10102e+00 1.067e+03 1.067e+03 1.0e+00 3.9e-06 2.6e+00 1.2e+01 7 -2.10102e+00 1.067e+03 1.067e+03 1.0e+00 2.1e-08 3.1e+00 1.4e+01 8 -2.10102e+00 1.067e+03 1.067e+03 1.0e+00 1.9e-09 3.3e+00 1.5e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 3.3e+00 arnorm = 6.9e-06 itn = 8 r2norm = 1.1e+03 acond = 1.5e+01 xnorm = 1.3e+02 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.033725 wall, 0.030000 cpu Topt 0.362518 wall, 0.370000 cpu Tstep 0.300563 wall, 0.290000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.46816, 17.66947) with Mags: r=7.85094 and Galaxy Shape: re=0.03, ab=0.54, phi=-27.9 Source 2 has final probability: -2050063.03598 Probability difference is: 390.232232575 Source 3 has initial probability: -2050063.03598 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.51582, 17.78528) with Mags: r=4.72569 brightness is Mags: r=4.72569 brightness is Mags: r=2.72569 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.51582, 17.78528) with Mags: r=2.72569 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source3.shape.re', 'catalog.source3.shape.ab', 'catalog.source3.shape.phi', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.146e+03 1.146e+03 1.0e+00 8.6e-05 1 1.63262e+00 1.143e+03 1.143e+03 1.0e+00 2.7e-02 1.3e+00 1.0e+00 2 1.72160e+00 1.142e+03 1.142e+03 1.0e+00 1.8e-02 1.7e+00 2.3e+00 3 1.31798e+00 1.142e+03 1.142e+03 1.0e+00 1.0e-02 2.2e+00 4.1e+00 4 1.48613e+00 1.142e+03 1.142e+03 1.0e+00 2.2e-03 2.4e+00 6.2e+00 5 1.48011e+00 1.141e+03 1.141e+03 1.0e+00 2.0e-03 2.5e+00 7.6e+00 6 1.48128e+00 1.141e+03 1.141e+03 1.0e+00 3.9e-04 2.7e+00 1.1e+01 7 1.48154e+00 1.141e+03 1.141e+03 1.0e+00 7.9e-05 2.8e+00 1.2e+01 8 1.48140e+00 1.141e+03 1.141e+03 1.0e+00 3.4e-07 3.2e+00 1.3e+01 9 1.48140e+00 1.141e+03 1.141e+03 1.0e+00 6.9e-08 3.5e+00 1.5e+01 10 1.48140e+00 1.141e+03 1.141e+03 1.0e+00 1.3e-06 3.5e+00 6.7e+01 15 1.48140e+00 1.141e+03 1.141e+03 1.0e+00 3.0e-08 4.5e+00 3.2e+04 16 1.48140e+00 1.141e+03 1.141e+03 1.0e+00 1.6e-09 4.8e+00 3.4e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.1e+03 anorm = 4.8e+00 arnorm = 8.8e-06 itn = 16 r2norm = 1.1e+03 acond = 3.4e+04 xnorm = 1.3e+04 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.036653 wall, 0.030000 cpu Topt 0.543090 wall, 0.550000 cpu Tstep 0.073256 wall, 0.070000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.51582, 17.78528) with Mags: r=2.72569 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 3 has final probability: -2050244.62634 Probability difference is: -181.590360233 Source 4 has initial probability: -2050882.01914 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.45069, 17.78498) with Mags: r=2.94513 brightness is Mags: r=2.94513 brightness is Mags: r=0.945128 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.45069, 17.78498) with Mags: r=0.945128 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source4.shape.re', 'catalog.source4.shape.ab', 'catalog.source4.shape.phi', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.860e+02 9.860e+02 1.0e+00 1.4e-04 1 1.93333e+00 9.801e+02 9.801e+02 9.9e-01 4.8e-02 1.2e+00 1.0e+00 2 1.39793e+00 9.773e+02 9.773e+02 9.9e-01 2.9e-02 1.6e+00 2.5e+00 3 1.37093e+00 9.757e+02 9.757e+02 9.9e-01 2.4e-02 1.9e+00 4.2e+00 4 1.49100e+00 9.752e+02 9.752e+02 9.9e-01 5.0e-03 2.4e+00 6.2e+00 5 1.47853e+00 9.750e+02 9.750e+02 9.9e-01 4.9e-03 2.5e+00 7.9e+00 6 1.48141e+00 9.748e+02 9.748e+02 9.9e-01 2.2e-06 2.6e+00 1.1e+01 7 1.48140e+00 9.748e+02 9.748e+02 9.9e-01 1.6e-07 3.0e+00 1.2e+01 8 1.48140e+00 9.748e+02 9.748e+02 9.9e-01 1.0e-07 3.3e+00 1.4e+01 9 1.48140e+00 9.748e+02 9.748e+02 9.9e-01 4.7e-06 3.4e+00 1.5e+02 10 1.48140e+00 9.748e+02 9.748e+02 9.9e-01 2.9e-05 3.6e+00 1.3e+03 13 1.48140e+00 9.748e+02 9.748e+02 9.9e-01 1.9e-08 4.2e+00 3.0e+04 14 1.48140e+00 9.748e+02 9.748e+02 9.9e-01 8.6e-10 4.5e+00 3.2e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.7e+02 anorm = 4.5e+00 arnorm = 3.8e-06 itn = 14 r2norm = 9.7e+02 acond = 3.2e+04 xnorm = 1.3e+04 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.034396 wall, 0.050000 cpu Topt 0.478523 wall, 0.460000 cpu Tstep 0.065332 wall, 0.070000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.45069, 17.78498) with Mags: r=0.945128 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 4 has final probability: -2052490.23915 Probability difference is: -1608.22000572 Source 5 has initial probability: -2072645.45512 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.42721, 17.78198) with Mags: r=3.93036 brightness is Mags: r=3.93036 brightness is Mags: r=1.93036 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.42721, 17.78198) with Mags: r=1.93036 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source5.shape.re', 'catalog.source5.shape.ab', 'catalog.source5.shape.phi', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.706e+02 9.706e+02 1.0e+00 3.4e-04 1 1.49418e+00 9.440e+02 9.440e+02 9.7e-01 2.2e-02 1.4e+00 1.0e+00 2 1.49385e+00 9.434e+02 9.434e+02 9.7e-01 2.3e-02 1.6e+00 2.3e+00 3 1.47311e+00 9.428e+02 9.428e+02 9.7e-01 1.2e-02 2.2e+00 4.5e+00 4 1.48153e+00 9.422e+02 9.422e+02 9.7e-01 1.6e-03 2.4e+00 7.0e+00 5 1.48112e+00 9.422e+02 9.422e+02 9.7e-01 1.5e-03 2.5e+00 8.4e+00 6 1.48281e+00 9.421e+02 9.421e+02 9.7e-01 4.3e-05 2.6e+00 1.2e+01 7 1.48141e+00 9.421e+02 9.421e+02 9.7e-01 8.8e-07 3.0e+00 1.3e+01 8 1.48140e+00 9.421e+02 9.421e+02 9.7e-01 8.5e-08 3.4e+00 1.5e+01 9 1.48141e+00 9.421e+02 9.421e+02 9.7e-01 1.9e-06 3.4e+00 6.3e+01 10 1.48140e+00 9.421e+02 9.421e+02 9.7e-01 1.3e-05 3.6e+00 5.7e+02 14 1.48140e+00 9.421e+02 9.421e+02 9.7e-01 1.3e-09 4.6e+00 3.2e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.4e+02 anorm = 4.6e+00 arnorm = 5.6e-06 itn = 14 r2norm = 9.4e+02 acond = 3.2e+04 xnorm = 1.3e+04 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.030477 wall, 0.040000 cpu Topt 0.446053 wall, 0.440000 cpu Tstep 0.056409 wall, 0.060000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.42721, 17.78198) with Mags: r=1.93036 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 5 has final probability: -2072993.72983 Probability difference is: -348.274707828 Source 6 has initial probability: -2076189.87488 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.57226, 17.79959) with Mags: r=3.34556 brightness is Mags: r=3.34556 brightness is Mags: r=1.34556 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.57226, 17.79959) with Mags: r=1.34556 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source6.shape.re', 'catalog.source6.shape.ab', 'catalog.source6.shape.phi', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 9.924e+02 9.924e+02 1.0e+00 3.4e-04 1 1.50477e+00 9.624e+02 9.624e+02 9.7e-01 2.7e-02 1.4e+00 1.0e+00 2 1.48004e+00 9.611e+02 9.611e+02 9.7e-01 2.1e-02 1.6e+00 2.5e+00 3 1.47203e+00 9.605e+02 9.605e+02 9.7e-01 1.8e-02 2.0e+00 4.1e+00 4 1.48205e+00 9.599e+02 9.599e+02 9.7e-01 4.5e-03 2.4e+00 6.6e+00 5 1.48125e+00 9.598e+02 9.598e+02 9.7e-01 3.9e-03 2.5e+00 8.2e+00 6 1.48140e+00 9.596e+02 9.596e+02 9.7e-01 6.2e-06 2.6e+00 1.1e+01 7 1.48140e+00 9.596e+02 9.596e+02 9.7e-01 4.7e-07 3.0e+00 1.3e+01 8 1.48140e+00 9.596e+02 9.596e+02 9.7e-01 1.4e-07 3.3e+00 1.5e+01 9 1.48140e+00 9.596e+02 9.596e+02 9.7e-01 1.0e-07 3.5e+00 1.6e+01 10 1.48140e+00 9.596e+02 9.596e+02 9.7e-01 4.9e-06 3.5e+00 1.7e+02 13 1.48140e+00 9.596e+02 9.596e+02 9.7e-01 3.7e-08 4.2e+00 3.0e+04 14 1.48140e+00 9.596e+02 9.596e+02 9.7e-01 3.4e-10 4.6e+00 3.2e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 9.6e+02 anorm = 4.6e+00 arnorm = 1.5e-06 itn = 14 r2norm = 9.6e+02 acond = 3.2e+04 xnorm = 1.3e+04 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.032853 wall, 0.030000 cpu Topt 0.460653 wall, 0.450000 cpu Tstep 0.060429 wall, 0.060000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.57226, 17.79959) with Mags: r=1.34556 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 6 has final probability: -2076896.29118 Probability difference is: -706.416297157 Source 7 has initial probability: -2086597.91912 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.55781, 17.78946) with Mags: r=2.67055 brightness is Mags: r=2.67055 brightness is Mags: r=0.670553 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.55781, 17.78946) with Mags: r=0.670553 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source7.shape.re', 'catalog.source7.shape.ab', 'catalog.source7.shape.phi', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.064e+03 1.064e+03 1.0e+00 3.5e-04 1 1.51603e+00 1.024e+03 1.024e+03 9.6e-01 3.5e-02 1.4e+00 1.0e+00 2 1.47545e+00 1.022e+03 1.022e+03 9.6e-01 2.2e-02 1.6e+00 2.5e+00 3 1.47841e+00 1.021e+03 1.021e+03 9.6e-01 1.8e-02 1.8e+00 4.4e+00 4 1.48190e+00 1.020e+03 1.020e+03 9.6e-01 5.1e-03 2.4e+00 6.3e+00 5 1.48196e+00 1.020e+03 1.020e+03 9.6e-01 4.9e-03 2.5e+00 8.1e+00 6 1.47873e+00 1.020e+03 1.020e+03 9.6e-01 4.3e-04 2.6e+00 1.1e+01 7 1.48141e+00 1.020e+03 1.020e+03 9.6e-01 1.5e-05 3.0e+00 1.3e+01 8 1.48140e+00 1.020e+03 1.020e+03 9.6e-01 4.4e-07 3.2e+00 1.4e+01 9 1.48140e+00 1.020e+03 1.020e+03 9.6e-01 7.7e-08 3.5e+00 1.5e+01 10 1.48141e+00 1.020e+03 1.020e+03 9.6e-01 5.9e-06 3.5e+00 2.1e+02 14 1.48140e+00 1.020e+03 1.020e+03 9.6e-01 2.6e-08 4.4e+00 3.1e+04 15 1.48140e+00 1.020e+03 1.020e+03 9.6e-01 2.1e-09 4.7e+00 3.3e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.0e+03 anorm = 4.7e+00 arnorm = 9.7e-06 itn = 15 r2norm = 1.0e+03 acond = 3.3e+04 xnorm = 1.3e+04 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.035165 wall, 0.030000 cpu Topt 0.526030 wall, 0.530000 cpu Tstep 0.068548 wall, 0.060000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.55781, 17.78946) with Mags: r=0.670553 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 7 has final probability: -2088749.62013 Probability difference is: -2151.70100866 Source 8 has initial probability: -2122687.97777 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.52463, 17.78049) with Mags: r=5.28933 brightness is Mags: r=5.28933 brightness is Mags: r=3.28933 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.52463, 17.78049) with Mags: r=3.28933 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source8.shape.re', 'catalog.source8.shape.ab', 'catalog.source8.shape.phi', 'catalog.source9.brightness.r', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.290e+03 1.290e+03 1.0e+00 3.3e-04 1 1.48761e+00 1.229e+03 1.229e+03 9.5e-01 2.0e-02 1.4e+00 1.0e+00 2 1.48672e+00 1.228e+03 1.228e+03 9.5e-01 2.5e-02 1.6e+00 2.5e+00 3 1.47533e+00 1.228e+03 1.228e+03 9.5e-01 1.6e-02 2.1e+00 4.9e+00 4 1.48133e+00 1.227e+03 1.227e+03 9.5e-01 3.2e-03 2.4e+00 7.6e+00 5 1.48234e+00 1.226e+03 1.226e+03 9.5e-01 2.6e-03 2.5e+00 9.0e+00 6 1.48001e+00 1.226e+03 1.226e+03 9.5e-01 1.3e-03 2.7e+00 1.1e+01 7 1.48142e+00 1.226e+03 1.226e+03 9.5e-01 1.1e-04 3.0e+00 1.2e+01 8 1.48140e+00 1.226e+03 1.226e+03 9.5e-01 9.6e-07 3.2e+00 1.3e+01 9 1.48140e+00 1.226e+03 1.226e+03 9.5e-01 8.3e-08 3.5e+00 1.5e+01 10 1.48140e+00 1.226e+03 1.226e+03 9.5e-01 1.0e-07 3.6e+00 1.6e+01 15 1.48140e+00 1.226e+03 1.226e+03 9.5e-01 4.2e-08 4.5e+00 3.2e+04 16 1.48140e+00 1.226e+03 1.226e+03 9.5e-01 2.8e-09 4.8e+00 3.4e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.2e+03 anorm = 4.8e+00 arnorm = 1.6e-05 itn = 16 r2norm = 1.2e+03 acond = 3.4e+04 xnorm = 1.3e+04 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.037466 wall, 0.040000 cpu Topt 0.578453 wall, 0.580000 cpu Tstep 0.077803 wall, 0.080000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.52463, 17.78049) with Mags: r=3.28933 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 Source 8 has final probability: -2122743.10977 Probability difference is: -55.1320084524 Source 9 has initial probability: -2122977.95446 initially, galaxy is PointSource at RaDecPos: RA, Dec = (212.51808, 17.74175) with Mags: r=3.77054 brightness is Mags: r=3.77054 brightness is Mags: r=1.77054 after we change, galaxy is ExpGalaxy at RaDecPos: RA, Dec = (212.51808, 17.74175) with Mags: r=1.77054 and Galaxy Shape: re=32.00, ab=1.00, phi=0.0 ['catalog.source0.brightness.r', 'catalog.source1.brightness.r', 'catalog.source2.brightness.r', 'catalog.source3.brightness.r', 'catalog.source4.brightness.r', 'catalog.source5.brightness.r', 'catalog.source6.brightness.r', 'catalog.source7.brightness.r', 'catalog.source8.brightness.r', 'catalog.source9.brightness.r', 'catalog.source9.shape.re', 'catalog.source9.shape.ab', 'catalog.source9.shape.phi', 'catalog.source10.brightness.r', 'catalog.source11.brightness.r', 'catalog.source12.brightness.r', 'catalog.source13.brightness.r', 'catalog.source14.brightness.r', 'catalog.source15.brightness.r', 'catalog.source16.brightness.r', 'catalog.source17.brightness.r', 'catalog.source18.brightness.r', 'catalog.source19.brightness.r', 'catalog.source20.brightness.r', 'catalog.source21.brightness.r', 'catalog.source22.brightness.r', 'catalog.source23.brightness.r', 'catalog.source24.brightness.r', 'catalog.source25.brightness.r', 'catalog.source26.brightness.r', 'catalog.source27.brightness.r', 'catalog.source28.brightness.r', 'catalog.source29.brightness.r', 'catalog.source30.brightness.r', 'catalog.source31.brightness.r', 'catalog.source32.brightness.r', 'catalog.source33.brightness.r', 'catalog.source34.brightness.r', 'catalog.source35.brightness.r', 'catalog.source36.brightness.r', 'catalog.source37.brightness.r', 'catalog.source38.brightness.r', 'catalog.source39.brightness.r', 'catalog.source40.brightness.r', 'catalog.source41.brightness.r', 'catalog.source42.brightness.r', 'catalog.source43.brightness.r', 'catalog.source44.brightness.r', 'catalog.source45.brightness.r', 'catalog.source46.brightness.r', 'catalog.source47.brightness.r', 'catalog.source48.brightness.r', 'catalog.source49.brightness.r', 'catalog.source50.brightness.r', 'catalog.source51.brightness.r', 'catalog.source52.brightness.r', 'catalog.source53.brightness.r', 'catalog.source54.brightness.r', 'catalog.source55.brightness.r', 'catalog.source56.brightness.r', 'catalog.source57.brightness.r', 'catalog.source58.brightness.r', 'catalog.source59.brightness.r', 'catalog.source60.brightness.r', 'catalog.source61.brightness.r', 'catalog.source62.brightness.r', 'catalog.source63.brightness.r', 'catalog.source64.brightness.r', 'catalog.source65.brightness.r', 'catalog.source66.brightness.r', 'catalog.source67.brightness.r', 'catalog.source68.brightness.r', 'catalog.source69.brightness.r', 'catalog.source70.brightness.r', 'catalog.source71.brightness.r', 'catalog.source72.brightness.r', 'catalog.source73.brightness.r', 'catalog.source74.brightness.r', 'catalog.source75.brightness.r', 'catalog.source76.brightness.r', 'catalog.source77.brightness.r', 'catalog.source78.brightness.r', 'catalog.source79.brightness.r', 'catalog.source80.brightness.r', 'catalog.source81.brightness.r', 'catalog.source82.brightness.r', 'catalog.source83.brightness.r', 'catalog.source84.brightness.r'] Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 88 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 176 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.830e+03 1.830e+03 1.0e+00 2.9e-04 1 1.92652e+00 1.658e+03 1.658e+03 9.1e-01 2.9e-01 1.2e+00 1.0e+00 2 2.27517e+00 1.507e+03 1.507e+03 8.2e-01 2.3e-01 1.7e+00 2.7e+00 3 9.99888e-01 1.395e+03 1.395e+03 7.6e-01 1.2e-01 2.2e+00 4.7e+00 4 1.47513e+00 1.344e+03 1.344e+03 7.3e-01 3.5e-02 2.4e+00 6.4e+00 5 1.59207e+00 1.334e+03 1.334e+03 7.3e-01 5.2e-02 2.6e+00 7.8e+00 6 1.46974e+00 1.317e+03 1.317e+03 7.2e-01 1.6e-02 2.9e+00 1.1e+01 7 1.48492e+00 1.315e+03 1.315e+03 7.2e-01 2.8e-03 3.1e+00 1.2e+01 8 1.48096e+00 1.315e+03 1.315e+03 7.2e-01 2.1e-04 3.3e+00 1.4e+01 9 1.48141e+00 1.315e+03 1.315e+03 7.2e-01 4.8e-06 3.6e+00 1.5e+01 10 1.48140e+00 1.315e+03 1.315e+03 7.2e-01 2.5e-07 3.7e+00 1.6e+01 11 1.48140e+00 1.315e+03 1.315e+03 7.2e-01 5.3e-08 4.0e+00 1.7e+01 15 1.48140e+00 1.315e+03 1.315e+03 7.2e-01 5.9e-09 4.6e+00 3.2e+04 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.3e+03 anorm = 4.6e+00 arnorm = 3.6e-05 itn = 15 r2norm = 1.3e+03 acond = 3.2e+04 xnorm = 1.4e+04 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.042659 wall, 0.040000 cpu Topt 0.627270 wall, 0.610000 cpu Tstep 0.198672 wall, 0.200000 cpu and after optimising, galaxy is: ExpGalaxy at RaDecPos: RA, Dec = (212.51808, 17.74175) with Mags: r=1.26253 and Galaxy Shape: re=38.56, ab=1.00, phi=155.8 Source 9 has final probability: -2116608.74648 Probability difference is: 6369.2079804 FINISHED SWITCHING TO GALAXIES Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 91 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 182 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.879e+03 1.879e+03 1.0e+00 3.0e-04 1 1.77345e+00 1.688e+03 1.688e+03 9.0e-01 3.0e-01 1.3e+00 1.0e+00 2 2.61610e+00 1.471e+03 1.471e+03 7.8e-01 2.5e-01 1.7e+00 2.9e+00 3 1.37472e+00 1.371e+03 1.371e+03 7.3e-01 7.8e-02 2.2e+00 4.7e+00 4 1.31883e+00 1.342e+03 1.342e+03 7.1e-01 7.9e-02 2.4e+00 6.1e+00 5 1.53125e+00 1.323e+03 1.323e+03 7.0e-01 5.2e-02 2.8e+00 8.1e+00 6 1.61489e+00 1.299e+03 1.299e+03 6.9e-01 4.0e-02 3.1e+00 1.1e+01 7 1.47829e+00 1.294e+03 1.294e+03 6.9e-01 9.6e-04 3.4e+00 1.3e+01 8 1.48012e+00 1.294e+03 1.294e+03 6.9e-01 4.7e-04 3.5e+00 1.4e+01 9 1.47907e+00 1.294e+03 1.294e+03 6.9e-01 1.4e-04 3.7e+00 1.5e+01 10 1.47918e+00 1.294e+03 1.294e+03 6.9e-01 1.2e-05 3.9e+00 1.6e+01 14 1.47919e+00 1.294e+03 1.294e+03 6.9e-01 7.8e-09 4.5e+00 2.1e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.3e+03 anorm = 4.5e+00 arnorm = 4.5e-05 itn = 14 r2norm = 1.3e+03 acond = 2.1e+01 xnorm = 2.8e+03 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.215577 wall, 0.210000 cpu Topt 0.675367 wall, 0.680000 cpu Tstep 1.024007 wall, 1.020000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 91 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 182 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.575e+03 1.575e+03 1.0e+00 2.9e-04 1 1.66213e+00 1.493e+03 1.493e+03 9.5e-01 6.2e-02 1.4e+00 1.0e+00 2 1.69303e+00 1.489e+03 1.489e+03 9.5e-01 2.0e-02 2.0e+00 2.0e+00 3 1.73453e+00 1.489e+03 1.489e+03 9.5e-01 4.0e-03 2.4e+00 3.3e+00 4 1.78069e+00 1.489e+03 1.489e+03 9.5e-01 5.7e-03 2.5e+00 4.9e+00 5 1.73596e+00 1.488e+03 1.488e+03 9.5e-01 1.8e-03 2.8e+00 9.3e+00 6 1.70211e+00 1.488e+03 1.488e+03 9.5e-01 6.1e-04 3.1e+00 1.1e+01 7 1.71385e+00 1.488e+03 1.488e+03 9.5e-01 9.4e-05 3.3e+00 1.2e+01 8 1.71485e+00 1.488e+03 1.488e+03 9.5e-01 3.0e-05 3.4e+00 1.3e+01 9 1.71480e+00 1.488e+03 1.488e+03 9.5e-01 8.2e-06 3.5e+00 1.4e+01 10 1.71500e+00 1.488e+03 1.488e+03 9.5e-01 9.9e-07 3.8e+00 1.6e+01 11 1.71497e+00 1.488e+03 1.488e+03 9.5e-01 2.9e-08 4.0e+00 1.7e+01 12 1.71497e+00 1.488e+03 1.488e+03 9.5e-01 1.5e-09 4.1e+00 1.8e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 4.1e+00 arnorm = 9.0e-06 itn = 12 r2norm = 1.5e+03 acond = 1.8e+01 xnorm = 4.0e+02 RUsage is: 10186592 Finding optimal step size... Finished opt2. Tderiv 0.634665 wall, 0.630000 cpu Topt 1.378932 wall, 1.370000 cpu Tstep 2.363133 wall, 2.360000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 91 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 182 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.512e+03 1.512e+03 1.0e+00 1.5e-04 1 4.97507e-01 1.493e+03 1.493e+03 9.9e-01 2.9e-02 1.4e+00 1.0e+00 2 4.82884e-01 1.492e+03 1.492e+03 9.9e-01 1.1e-02 1.9e+00 2.1e+00 3 4.49292e-01 1.492e+03 1.492e+03 9.9e-01 3.6e-03 2.3e+00 3.4e+00 4 4.90919e-01 1.492e+03 1.492e+03 9.9e-01 6.3e-03 2.4e+00 6.2e+00 5 5.29137e-01 1.491e+03 1.491e+03 9.9e-01 5.9e-04 2.8e+00 9.2e+00 6 5.26808e-01 1.491e+03 1.491e+03 9.9e-01 4.1e-04 3.0e+00 1.0e+01 7 5.29078e-01 1.491e+03 1.491e+03 9.9e-01 1.9e-04 3.2e+00 1.2e+01 8 5.29076e-01 1.491e+03 1.491e+03 9.9e-01 1.1e-05 3.4e+00 1.3e+01 9 5.28993e-01 1.491e+03 1.491e+03 9.9e-01 1.2e-06 3.6e+00 1.4e+01 10 5.29010e-01 1.491e+03 1.491e+03 9.9e-01 3.3e-07 3.8e+00 1.5e+01 11 5.29000e-01 1.491e+03 1.491e+03 9.9e-01 3.9e-09 4.0e+00 1.7e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 4.0e+00 arnorm = 2.3e-05 itn = 11 r2norm = 1.5e+03 acond = 1.7e+01 xnorm = 2.2e+02 RUsage is: 10192328 Finding optimal step size... Finished opt2. Tderiv 0.621582 wall, 0.620000 cpu Topt 1.415741 wall, 1.410000 cpu Tstep 2.526305 wall, 2.520000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 91 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 182 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.497e+03 1.497e+03 1.0e+00 7.4e-05 1 -3.01357e-01 1.493e+03 1.493e+03 1.0e+00 1.8e-02 1.5e+00 1.0e+00 2 -2.95896e-01 1.493e+03 1.493e+03 1.0e+00 5.6e-03 2.0e+00 2.1e+00 3 -2.38238e-01 1.493e+03 1.493e+03 1.0e+00 1.1e-03 2.4e+00 3.3e+00 4 -2.42717e-01 1.493e+03 1.493e+03 1.0e+00 1.0e-03 2.5e+00 5.0e+00 5 -2.39313e-01 1.493e+03 1.493e+03 1.0e+00 1.8e-04 2.9e+00 6.7e+00 6 -2.37495e-01 1.493e+03 1.493e+03 1.0e+00 1.1e-04 3.0e+00 7.8e+00 7 -2.40817e-01 1.493e+03 1.493e+03 1.0e+00 1.2e-04 3.2e+00 9.6e+00 8 -2.39486e-01 1.493e+03 1.493e+03 1.0e+00 3.9e-05 3.4e+00 1.3e+01 9 -2.39991e-01 1.493e+03 1.493e+03 1.0e+00 2.3e-06 3.6e+00 1.5e+01 10 -2.39931e-01 1.493e+03 1.493e+03 1.0e+00 4.3e-07 3.7e+00 1.6e+01 11 -2.39952e-01 1.493e+03 1.493e+03 1.0e+00 7.2e-10 4.0e+00 1.7e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 4.0e+00 arnorm = 4.3e-06 itn = 11 r2norm = 1.5e+03 acond = 1.7e+01 xnorm = 9.0e+01 RUsage is: 10315480 Finding optimal step size... Finished opt2. Tderiv 0.618400 wall, 0.620000 cpu Topt 1.388379 wall, 1.380000 cpu Tstep 2.499206 wall, 2.480000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 91 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 182 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.493e+03 1.493e+03 1.0e+00 1.7e-05 1 1.51323e-01 1.493e+03 1.493e+03 1.0e+00 9.9e-03 1.3e+00 1.0e+00 2 1.58313e-01 1.493e+03 1.493e+03 1.0e+00 3.4e-03 1.8e+00 2.3e+00 3 1.00443e-01 1.493e+03 1.493e+03 1.0e+00 2.2e-03 2.1e+00 3.7e+00 4 1.21473e-01 1.493e+03 1.493e+03 1.0e+00 4.3e-04 2.5e+00 5.4e+00 5 1.21527e-01 1.493e+03 1.493e+03 1.0e+00 7.4e-05 2.9e+00 6.6e+00 6 1.16660e-01 1.493e+03 1.493e+03 1.0e+00 1.1e-04 2.9e+00 8.9e+00 7 1.22299e-01 1.493e+03 1.493e+03 1.0e+00 5.7e-05 3.1e+00 1.2e+01 8 1.18904e-01 1.493e+03 1.493e+03 1.0e+00 1.2e-05 3.4e+00 1.3e+01 9 1.19457e-01 1.493e+03 1.493e+03 1.0e+00 8.1e-07 3.6e+00 1.5e+01 10 1.19478e-01 1.493e+03 1.493e+03 1.0e+00 7.5e-08 3.7e+00 1.6e+01 11 1.19471e-01 1.493e+03 1.493e+03 1.0e+00 2.5e-10 4.0e+00 1.7e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 4.0e+00 arnorm = 1.5e-06 itn = 11 r2norm = 1.5e+03 acond = 1.7e+01 xnorm = 4.5e+01 RUsage is: 10414104 Finding optimal step size... Finished opt2. Tderiv 0.629439 wall, 0.630000 cpu Topt 1.326379 wall, 1.320000 cpu Tstep 2.286913 wall, 2.270000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 91 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 182 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.493e+03 1.493e+03 1.0e+00 8.6e-06 1 2.76284e-02 1.493e+03 1.493e+03 1.0e+00 2.6e-03 1.5e+00 1.0e+00 2 3.68566e-02 1.493e+03 1.493e+03 1.0e+00 6.8e-04 1.9e+00 2.2e+00 3 3.46796e-02 1.493e+03 1.493e+03 1.0e+00 2.5e-04 2.3e+00 3.3e+00 4 3.45373e-02 1.493e+03 1.493e+03 1.0e+00 2.0e-04 2.5e+00 5.3e+00 5 3.48249e-02 1.493e+03 1.493e+03 1.0e+00 5.0e-05 2.8e+00 6.9e+00 6 3.43996e-02 1.493e+03 1.493e+03 1.0e+00 6.9e-05 2.9e+00 9.4e+00 7 3.62287e-02 1.493e+03 1.493e+03 1.0e+00 2.7e-05 3.1e+00 1.2e+01 8 3.54648e-02 1.493e+03 1.493e+03 1.0e+00 4.1e-06 3.3e+00 1.3e+01 9 3.57208e-02 1.493e+03 1.493e+03 1.0e+00 2.8e-07 3.6e+00 1.4e+01 10 3.57241e-02 1.493e+03 1.493e+03 1.0e+00 1.6e-08 3.7e+00 1.6e+01 11 3.57229e-02 1.493e+03 1.493e+03 1.0e+00 3.9e-11 4.0e+00 1.7e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 4.0e+00 arnorm = 2.3e-07 itn = 11 r2norm = 1.5e+03 acond = 1.7e+01 xnorm = 1.2e+01 RUsage is: 10506520 Finding optimal step size... Finished opt2. Tderiv 0.622214 wall, 0.630000 cpu Topt 1.352678 wall, 1.350000 cpu Tstep 2.279693 wall, 2.260000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 91 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 182 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.493e+03 1.493e+03 1.0e+00 3.3e-06 1 5.46944e-03 1.493e+03 1.493e+03 1.0e+00 9.3e-04 1.5e+00 1.0e+00 2 8.21364e-03 1.493e+03 1.493e+03 1.0e+00 2.4e-04 1.9e+00 2.2e+00 3 9.19041e-03 1.493e+03 1.493e+03 1.0e+00 5.1e-05 2.4e+00 3.3e+00 4 9.70441e-03 1.493e+03 1.493e+03 1.0e+00 7.1e-05 2.5e+00 5.1e+00 5 9.74313e-03 1.493e+03 1.493e+03 1.0e+00 2.7e-05 2.8e+00 8.7e+00 6 9.83685e-03 1.493e+03 1.493e+03 1.0e+00 1.5e-05 3.0e+00 1.0e+01 7 9.90420e-03 1.493e+03 1.493e+03 1.0e+00 8.8e-06 3.2e+00 1.2e+01 8 9.92936e-03 1.493e+03 1.493e+03 1.0e+00 2.0e-06 3.3e+00 1.3e+01 9 9.94423e-03 1.493e+03 1.493e+03 1.0e+00 7.3e-08 3.6e+00 1.4e+01 10 9.94569e-03 1.493e+03 1.493e+03 1.0e+00 5.1e-09 3.7e+00 1.6e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 3.7e+00 arnorm = 2.9e-05 itn = 10 r2norm = 1.5e+03 acond = 1.6e+01 xnorm = 4.4e+00 RUsage is: 10605172 Finding optimal step size... Finished opt2. Tderiv 0.625289 wall, 0.630000 cpu Topt 1.349067 wall, 1.340000 cpu Tstep 2.476018 wall, 2.470000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 91 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 182 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.493e+03 1.493e+03 1.0e+00 1.2e-06 1 5.66442e-04 1.493e+03 1.493e+03 1.0e+00 4.6e-04 1.4e+00 1.0e+00 2 1.64662e-03 1.493e+03 1.493e+03 1.0e+00 6.9e-05 1.9e+00 2.2e+00 3 2.52110e-03 1.493e+03 1.493e+03 1.0e+00 1.6e-05 2.3e+00 3.3e+00 4 2.44040e-03 1.493e+03 1.493e+03 1.0e+00 1.9e-05 2.4e+00 6.9e+00 5 2.86825e-03 1.493e+03 1.493e+03 1.0e+00 8.0e-06 2.6e+00 8.7e+00 6 2.71032e-03 1.493e+03 1.493e+03 1.0e+00 1.3e-07 2.9e+00 1.0e+01 7 2.71674e-03 1.493e+03 1.493e+03 1.0e+00 9.8e-08 3.0e+00 1.1e+01 8 2.70911e-03 1.493e+03 1.493e+03 1.0e+00 4.0e-08 3.3e+00 1.3e+01 9 2.71139e-03 1.493e+03 1.493e+03 1.0e+00 2.8e-10 3.5e+00 1.4e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 3.5e+00 arnorm = 1.5e-06 itn = 9 r2norm = 1.5e+03 acond = 1.4e+01 xnorm = 1.9e+00 RUsage is: 10703664 Finding optimal step size... Finished opt2. Tderiv 0.623896 wall, 0.630000 cpu Topt 1.287373 wall, 1.280000 cpu Tstep 2.470230 wall, 2.460000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 91 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 182 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.493e+03 1.493e+03 1.0e+00 5.0e-07 1 -4.18887e-04 1.493e+03 1.493e+03 1.0e+00 2.5e-04 1.3e+00 1.0e+00 2 1.63212e-04 1.493e+03 1.493e+03 1.0e+00 2.6e-05 1.9e+00 2.2e+00 3 6.74749e-04 1.493e+03 1.493e+03 1.0e+00 3.3e-06 2.3e+00 3.3e+00 4 6.05041e-04 1.493e+03 1.493e+03 1.0e+00 3.5e-06 2.4e+00 5.2e+00 5 7.82503e-04 1.493e+03 1.493e+03 1.0e+00 3.1e-06 2.6e+00 8.1e+00 6 6.89406e-04 1.493e+03 1.493e+03 1.0e+00 4.8e-07 2.9e+00 1.0e+01 7 6.97740e-04 1.493e+03 1.493e+03 1.0e+00 4.3e-08 3.0e+00 1.2e+01 8 6.95435e-04 1.493e+03 1.493e+03 1.0e+00 1.1e-08 3.3e+00 1.3e+01 9 6.95831e-04 1.493e+03 1.493e+03 1.0e+00 7.3e-11 3.5e+00 1.4e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 3.5e+00 arnorm = 3.8e-07 itn = 9 r2norm = 1.5e+03 acond = 1.4e+01 xnorm = 8.6e-01 RUsage is: 10796344 Finding optimal step size... Finished opt2. Tderiv 0.620618 wall, 0.620000 cpu Topt 1.273520 wall, 1.270000 cpu Tstep 2.667017 wall, 2.660000 cpu Tractor: Finding derivs... Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 91 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 182 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.493e+03 1.493e+03 1.0e+00 2.3e-07 1 -4.63343e-04 1.493e+03 1.493e+03 1.0e+00 1.3e-04 1.2e+00 1.0e+00 2 -7.36491e-05 1.493e+03 1.493e+03 1.0e+00 1.1e-05 1.9e+00 2.2e+00 3 2.06262e-04 1.493e+03 1.493e+03 1.0e+00 1.3e-06 2.3e+00 3.3e+00 4 1.72937e-04 1.493e+03 1.493e+03 1.0e+00 8.3e-07 2.5e+00 4.7e+00 5 2.08579e-04 1.493e+03 1.493e+03 1.0e+00 7.8e-07 2.6e+00 6.7e+00 6 1.77069e-04 1.493e+03 1.493e+03 1.0e+00 2.8e-07 2.9e+00 8.6e+00 7 1.77395e-04 1.493e+03 1.493e+03 1.0e+00 1.4e-08 3.0e+00 1.2e+01 8 1.76880e-04 1.493e+03 1.493e+03 1.0e+00 2.5e-09 3.3e+00 1.3e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 3.3e+00 arnorm = 1.2e-05 itn = 8 r2norm = 1.5e+03 acond = 1.3e+01 xnorm = 4.3e-01 RUsage is: 10901068 Finding optimal step size... Finished opt2. Tderiv 0.621380 wall, 0.620000 cpu Topt 1.198654 wall, 1.190000 cpu Tstep 2.662978 wall, 2.650000 cpu STEP 2: Tractor: Finding derivs... Finding optimal update direction... Starting psf optimisation {'images': 0, 'catalog': 1} Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.75, 0.25, 0.0, 0.0, 0.0, 0.0, 4.5269352648257124, 4.5269352648257124, 0.0, 18.10774105930285, 18.10774105930285, 0.0] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.493e+03 1.493e+03 1.0e+00 1.0e-04 1 -3.08677e+01 1.487e+03 1.487e+03 1.0e+00 4.4e-02 1.7e+00 1.0e+00 2 -2.05936e+01 1.483e+03 1.483e+03 9.9e-01 2.2e-02 2.2e+00 2.6e+00 3 -2.07344e+01 1.481e+03 1.481e+03 9.9e-01 2.6e-03 2.4e+00 4.6e+00 4 -1.99425e+01 1.481e+03 1.481e+03 9.9e-01 1.3e-03 2.6e+00 5.7e+00 5 -1.83791e+01 1.481e+03 1.481e+03 9.9e-01 1.7e-03 2.7e+00 7.7e+00 6 -1.33548e+01 1.481e+03 1.481e+03 9.9e-01 2.1e-03 2.9e+00 1.3e+01 7 -9.80842e+00 1.480e+03 1.480e+03 9.9e-01 8.1e-04 3.0e+00 1.9e+01 8 -1.10193e+01 1.480e+03 1.480e+03 9.9e-01 5.5e-04 3.2e+00 2.0e+01 9 -1.54624e+01 1.480e+03 1.480e+03 9.9e-01 3.4e-04 3.3e+00 2.3e+01 10 -2.58958e+01 1.480e+03 1.480e+03 9.9e-01 1.6e-04 3.4e+00 2.6e+01 11 -2.74940e+01 1.480e+03 1.480e+03 9.9e-01 1.3e-05 3.4e+00 2.7e+01 12 -2.75075e+01 1.480e+03 1.480e+03 9.9e-01 5.5e-08 3.5e+00 2.8e+01 13 -2.75074e+01 1.480e+03 1.480e+03 9.9e-01 1.9e-14 4.0e+00 3.2e+01 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 4.0e+00 arnorm = 1.1e-10 itn = 13 r2norm = 1.5e+03 acond = 3.2e+01 xnorm = 2.9e+02 RUsage is: 11613072 Finding optimal step size... /home/kilian/tractor/tractor/engine.py:419: RuntimeWarning: overflow encountered in multiply return Patch(self.x0, self.y0, self.patch * flux) /home/kilian/tractor/tractor/engine.py:419: RuntimeWarning: invalid value encountered in multiply return Patch(self.x0, self.y0, self.patch * flux) Finished opt2. Tderiv 2.452196 wall, 2.440000 cpu Topt 3.531574 wall, 3.510000 cpu Tstep 2.723674 wall, 2.710000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.57745731420689772, 0.42254268579310228, 0.071849803235780815, -0.35192313161031308, 0.31168038354640998, 6.9994334634294244, 4.3134510897548282, 4.2160650093461172, 0.0073130118865931768, 12.316888352835939, 8.1731629215611434, 4.1276763813056956] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.485e+03 1.485e+03 1.0e+00 2.0e-05 1 -1.74961e+00 1.485e+03 1.485e+03 1.0e+00 2.4e-03 3.3e+00 1.0e+00 2 -1.55775e+02 1.484e+03 1.484e+03 1.0e+00 1.3e-03 3.4e+00 1.6e+01 3 -2.38450e+02 1.483e+03 1.483e+03 1.0e+00 1.1e-03 3.5e+00 3.6e+01 4 -3.49302e+02 1.482e+03 1.482e+03 1.0e+00 7.8e-04 3.5e+00 5.4e+01 5 -4.92147e+02 1.482e+03 1.482e+03 1.0e+00 2.6e-04 3.5e+00 6.9e+01 6 -5.02480e+02 1.482e+03 1.482e+03 1.0e+00 3.5e-03 3.5e+00 7.1e+01 7 -8.12092e+02 1.482e+03 1.482e+03 1.0e+00 3.1e-04 4.9e+00 1.6e+02 8 -1.08956e+03 1.481e+03 1.481e+03 1.0e+00 1.5e-04 4.9e+00 2.0e+02 9 -1.47918e+03 1.481e+03 1.481e+03 1.0e+00 6.7e-05 4.9e+00 2.6e+02 10 -1.60048e+03 1.481e+03 1.481e+03 1.0e+00 5.0e-04 4.9e+00 2.9e+02 11 -1.60148e+03 1.481e+03 1.481e+03 1.0e+00 3.8e-05 6.0e+00 3.6e+02 12 -1.65642e+03 1.481e+03 1.481e+03 1.0e+00 4.6e-06 6.0e+00 4.2e+02 13 -1.57986e+03 1.481e+03 1.481e+03 1.0e+00 4.8e-06 6.0e+00 5.8e+02 14 -1.57991e+03 1.481e+03 1.481e+03 1.0e+00 1.9e-06 6.0e+00 5.8e+02 15 -1.57991e+03 1.481e+03 1.481e+03 1.0e+00 3.3e-06 6.2e+00 6.0e+02 16 -1.57178e+03 1.481e+03 1.481e+03 1.0e+00 4.5e-09 6.9e+00 7.6e+02 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 6.9e+00 arnorm = 4.6e-05 itn = 16 r2norm = 1.5e+03 acond = 7.6e+02 xnorm = 3.2e+03 RUsage is: 11797288 Finding optimal step size... Finished opt2. Tderiv 2.592384 wall, 2.590000 cpu Topt 3.702450 wall, 3.700000 cpu Tstep 2.075585 wall, 2.060000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.42255140574297811, 0.57744859425702177, 0.18978788575196071, -0.48020195089474893, 0.26660872780571154, 6.830321186792176, 4.3716391372095282, 3.5048544018994066, 0.18243544315282201, 14.071749724394772, 12.836560471600478, 4.4997082777704884] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.483e+03 1.483e+03 1.0e+00 3.2e-05 1 1.64152e+00 1.483e+03 1.483e+03 1.0e+00 2.7e-04 3.5e+00 1.0e+00 2 -6.47776e+02 1.483e+03 1.483e+03 1.0e+00 3.8e-04 3.5e+00 1.2e+02 3 -6.64518e+02 1.482e+03 1.482e+03 1.0e+00 3.2e-04 3.5e+00 1.7e+02 4 -1.11908e+03 1.481e+03 1.481e+03 1.0e+00 2.2e-04 3.5e+00 2.5e+02 5 -1.11913e+03 1.481e+03 1.481e+03 1.0e+00 2.6e-04 4.0e+00 2.9e+02 6 -1.54769e+03 1.481e+03 1.481e+03 1.0e+00 5.8e-05 4.9e+00 4.3e+02 7 -2.12132e+03 1.481e+03 1.481e+03 1.0e+00 6.3e-05 4.9e+00 5.2e+02 8 -3.81799e+03 1.480e+03 1.480e+03 1.0e+00 5.3e-05 4.9e+00 8.5e+02 9 -3.81803e+03 1.480e+03 1.480e+03 1.0e+00 3.3e-05 5.6e+00 9.8e+02 10 -5.22086e+03 1.480e+03 1.480e+03 1.0e+00 9.2e-06 6.0e+00 1.4e+03 11 -5.62775e+03 1.480e+03 1.480e+03 1.0e+00 4.5e-06 6.0e+00 1.7e+03 12 -5.62752e+03 1.480e+03 1.480e+03 1.0e+00 1.4e-04 6.0e+00 1.7e+03 13 -5.61033e+03 1.480e+03 1.480e+03 1.0e+00 2.1e-06 6.9e+00 2.0e+03 14 -5.23814e+03 1.480e+03 1.480e+03 1.0e+00 1.3e-06 6.9e+00 2.8e+03 15 -5.23607e+03 1.480e+03 1.480e+03 1.0e+00 1.3e-06 6.9e+00 2.8e+03 16 -5.23607e+03 1.480e+03 1.480e+03 1.0e+00 2.2e-07 7.7e+00 3.1e+03 17 -5.23975e+03 1.480e+03 1.480e+03 1.0e+00 1.1e-08 7.7e+00 3.4e+03 18 -5.23977e+03 1.480e+03 1.480e+03 1.0e+00 6.1e-10 7.7e+00 3.4e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 7.7e+00 arnorm = 7.0e-06 itn = 18 r2norm = 1.5e+03 acond = 3.4e+03 xnorm = 1.4e+04 RUsage is: 11972648 Finding optimal step size... Finished opt2. Tderiv 2.611783 wall, 2.610000 cpu Topt 4.033123 wall, 4.010000 cpu Tstep 2.061281 wall, 2.060000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.24704968583758746, 0.75295031416241254, 0.28661138696770827, -0.59284838510372229, 0.33744719320382255, 6.6845630092048998, 4.0678187316326584, 2.9080154244352872, 0.16606816312899314, 14.859311299631276, 19.682298871820844, 4.0495665815111339] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.483e+03 1.483e+03 1.0e+00 3.0e-05 1 1.75436e+00 1.482e+03 1.482e+03 1.0e+00 4.6e-04 3.5e+00 1.0e+00 2 4.18611e+02 1.482e+03 1.482e+03 1.0e+00 1.5e-04 3.5e+00 5.2e+01 3 -3.75950e+02 1.481e+03 1.481e+03 1.0e+00 1.9e-04 3.5e+00 2.8e+02 4 -5.91749e+02 1.480e+03 1.480e+03 1.0e+00 2.3e-03 3.5e+00 3.8e+02 5 -5.93414e+02 1.480e+03 1.480e+03 1.0e+00 5.5e-05 4.9e+00 5.4e+02 6 -1.10294e+03 1.480e+03 1.480e+03 1.0e+00 5.8e-05 4.9e+00 7.1e+02 7 -2.08102e+03 1.479e+03 1.479e+03 1.0e+00 5.4e-05 4.9e+00 9.6e+02 8 -2.18076e+03 1.479e+03 1.479e+03 1.0e+00 5.6e-03 4.9e+00 1.0e+03 9 -2.57923e+03 1.479e+03 1.479e+03 1.0e+00 1.3e-05 6.0e+00 1.4e+03 10 -3.74407e+03 1.479e+03 1.479e+03 1.0e+00 7.0e-06 6.0e+00 1.9e+03 11 -4.11610e+03 1.479e+03 1.479e+03 1.0e+00 8.5e-05 6.0e+00 2.2e+03 12 -4.11627e+03 1.479e+03 1.479e+03 1.0e+00 2.1e-06 6.9e+00 2.5e+03 13 -4.14309e+03 1.479e+03 1.479e+03 1.0e+00 8.6e-06 6.9e+00 2.6e+03 14 -4.16417e+03 1.479e+03 1.479e+03 1.0e+00 8.3e-07 6.9e+00 2.8e+03 15 -4.16423e+03 1.479e+03 1.479e+03 1.0e+00 9.2e-05 6.9e+00 2.8e+03 16 -4.16545e+03 1.479e+03 1.479e+03 1.0e+00 2.5e-07 7.7e+00 3.4e+03 17 -4.14347e+03 1.479e+03 1.479e+03 1.0e+00 2.5e-08 7.7e+00 4.7e+03 18 -4.14346e+03 1.479e+03 1.479e+03 1.0e+00 1.1e-06 7.7e+00 4.7e+03 19 -4.14342e+03 1.479e+03 1.479e+03 1.0e+00 4.9e-11 8.5e+00 5.2e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 8.5e+00 arnorm = 6.1e-07 itn = 19 r2norm = 1.5e+03 acond = 5.2e+03 xnorm = 1.9e+04 RUsage is: 12020312 Finding optimal step size... Finished opt2. Tderiv 2.606690 wall, 2.600000 cpu Topt 3.935446 wall, 3.920000 cpu Tstep 1.861328 wall, 1.860000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.22431398529523516, 0.77568601470476484, 0.26709045456553887, -0.58004634597183002, 0.4130162438644206, 6.7565537216927654, 3.8248901317942972, 2.6793572701116566, 0.10333695022190384, 14.855955932244866, 23.459650193009875, 3.1995528839844627] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.482e+03 1.482e+03 1.0e+00 3.5e-05 1 2.01853e+00 1.482e+03 1.482e+03 1.0e+00 5.8e-04 3.5e+00 1.0e+00 2 2.46810e+02 1.481e+03 1.481e+03 1.0e+00 1.8e-04 3.5e+00 3.5e+01 3 -1.76125e+02 1.481e+03 1.481e+03 1.0e+00 2.7e-04 3.5e+00 2.1e+02 4 -3.79669e+02 1.480e+03 1.480e+03 1.0e+00 1.1e-04 3.5e+00 3.1e+02 5 -3.80020e+02 1.480e+03 1.480e+03 1.0e+00 6.5e-04 3.5e+00 3.1e+02 6 -6.09737e+02 1.480e+03 1.480e+03 1.0e+00 8.3e-05 4.9e+00 5.3e+02 7 -1.27288e+03 1.479e+03 1.479e+03 1.0e+00 8.0e-05 4.9e+00 7.2e+02 8 -1.60220e+03 1.479e+03 1.479e+03 1.0e+00 2.5e-05 4.9e+00 8.9e+02 9 -1.60221e+03 1.479e+03 1.479e+03 1.0e+00 5.1e-05 5.1e+00 9.3e+02 10 -2.32990e+03 1.479e+03 1.479e+03 1.0e+00 1.2e-05 6.0e+00 1.4e+03 11 -2.71725e+03 1.479e+03 1.479e+03 1.0e+00 3.9e-06 6.0e+00 1.6e+03 12 -2.71814e+03 1.479e+03 1.479e+03 1.0e+00 2.2e-04 6.0e+00 1.7e+03 13 -2.75455e+03 1.479e+03 1.479e+03 1.0e+00 1.8e-06 6.9e+00 2.1e+03 14 -2.75890e+03 1.479e+03 1.479e+03 1.0e+00 4.7e-06 6.9e+00 2.1e+03 15 -2.75369e+03 1.479e+03 1.479e+03 1.0e+00 1.4e-06 6.9e+00 2.4e+03 16 -2.75369e+03 1.479e+03 1.479e+03 1.0e+00 2.3e-06 7.1e+00 2.5e+03 17 -2.73774e+03 1.479e+03 1.479e+03 1.0e+00 2.8e-09 7.7e+00 3.6e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 7.7e+00 arnorm = 3.2e-05 itn = 17 r2norm = 1.5e+03 acond = 3.6e+03 xnorm = 1.5e+04 RUsage is: 12221176 Finding optimal step size... Finished opt2. Tderiv 2.607414 wall, 2.600000 cpu Topt 3.911226 wall, 3.890000 cpu Tstep 2.674181 wall, 2.670000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.21884571251117049, 0.78115428748882954, -0.54591985096660522, 0.0035665551278537544, 1.39360396091655, 10.880769206439085, 3.0477839409969474, 2.0262033440751011, -0.1729170404030064, 15.090111892218717, 71.70971690587379, -16.686529113516919] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.475e+03 1.475e+03 1.0e+00 3.6e-05 1 1.87586e+00 1.475e+03 1.475e+03 1.0e+00 2.1e-05 3.5e+00 1.0e+00 2 -2.10189e+03 1.475e+03 1.475e+03 1.0e+00 1.1e-05 3.5e+00 5.5e+02 3 -7.97914e+03 1.473e+03 1.473e+03 1.0e+00 4.1e-03 3.5e+00 5.3e+03 4 -8.01742e+03 1.473e+03 1.473e+03 1.0e+00 1.6e-05 4.9e+00 7.6e+03 5 -1.80835e+04 1.472e+03 1.472e+03 1.0e+00 8.5e-06 4.9e+00 9.6e+03 6 -2.56837e+04 1.472e+03 1.472e+03 1.0e+00 9.4e-04 4.9e+00 1.1e+04 7 -2.57010e+04 1.472e+03 1.472e+03 1.0e+00 1.2e-05 6.0e+00 1.4e+04 8 -3.86822e+04 1.470e+03 1.470e+03 1.0e+00 1.1e-05 6.0e+00 1.7e+04 9 -5.97174e+04 1.467e+03 1.467e+03 9.9e-01 1.5e-03 6.0e+00 2.4e+04 10 -5.97524e+04 1.467e+03 1.467e+03 9.9e-01 4.4e-06 6.9e+00 2.8e+04 11 -8.55880e+04 1.464e+03 1.464e+03 9.9e-01 2.3e-06 6.9e+00 3.8e+04 12 -8.98831e+04 1.464e+03 1.464e+03 9.9e-01 7.6e-03 6.9e+00 4.0e+04 13 -9.65892e+04 1.463e+03 1.463e+03 9.9e-01 1.9e-06 7.7e+00 4.7e+04 14 -9.63758e+04 1.463e+03 1.463e+03 9.9e-01 5.7e-06 7.7e+00 4.8e+04 15 -1.18632e+05 1.463e+03 1.463e+03 9.9e-01 1.5e-03 7.7e+00 5.4e+04 16 -1.18906e+05 1.463e+03 1.463e+03 9.9e-01 3.2e-07 8.5e+00 6.0e+04 17 -1.04726e+05 1.463e+03 1.463e+03 9.9e-01 2.4e-07 8.5e+00 7.4e+04 18 -1.04726e+05 1.463e+03 1.463e+03 9.9e-01 5.8e-06 8.5e+00 7.4e+04 19 -9.84291e+04 1.462e+03 1.462e+03 9.9e-01 2.4e-06 9.2e+00 9.9e+04 20 -9.43434e+04 1.462e+03 1.462e+03 9.9e-01 1.1e-05 9.2e+00 1.1e+05 21 -9.43434e+04 1.462e+03 1.462e+03 9.9e-01 3.0e-08 9.8e+00 1.2e+05 22 -9.43543e+04 1.462e+03 1.462e+03 9.9e-01 1.7e-09 9.8e+00 1.2e+05 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 9.8e+00 arnorm = 2.4e-05 itn = 22 r2norm = 1.5e+03 acond = 1.2e+05 xnorm = 1.1e+06 RUsage is: 12333320 Finding optimal step size... Finished opt2. Tderiv 2.604778 wall, 2.600000 cpu Topt 4.447832 wall, 4.430000 cpu Tstep 1.649459 wall, 1.640000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.24843698445539952, 0.75156301554460048, -0.46791283764495423, -0.028509462305800905, 1.0468792433956349, 11.916572643500253, 3.2687481460268208, 2.1513727014812027, -0.16731785063963434, 15.304139134304817, 68.809136108406307, -16.367394828191745] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.474e+03 1.474e+03 1.0e+00 3.6e-05 1 1.69833e+00 1.474e+03 1.474e+03 1.0e+00 4.6e-04 3.5e+00 1.0e+00 2 -2.56688e+02 1.473e+03 1.473e+03 1.0e+00 1.4e-04 3.5e+00 3.9e+01 3 -1.15021e+03 1.472e+03 1.472e+03 1.0e+00 3.0e-04 3.5e+00 2.8e+02 4 -1.59456e+03 1.471e+03 1.471e+03 1.0e+00 7.9e-04 3.5e+00 4.1e+02 5 -1.59488e+03 1.471e+03 1.471e+03 1.0e+00 1.8e-04 4.8e+00 5.7e+02 6 -1.76942e+03 1.471e+03 1.471e+03 1.0e+00 1.5e-04 4.9e+00 6.9e+02 7 -2.18649e+03 1.470e+03 1.470e+03 1.0e+00 1.3e-04 4.9e+00 8.1e+02 8 -5.17113e+03 1.467e+03 1.467e+03 1.0e+00 1.7e-04 4.9e+00 1.3e+03 9 -5.17115e+03 1.467e+03 1.467e+03 1.0e+00 8.3e-05 5.7e+00 1.6e+03 10 -7.82791e+03 1.463e+03 1.463e+03 9.9e-01 3.5e-05 6.0e+00 2.4e+03 11 -8.49490e+03 1.463e+03 1.463e+03 9.9e-01 2.6e-05 6.0e+00 2.6e+03 12 -8.49926e+03 1.463e+03 1.463e+03 9.9e-01 7.4e-04 6.0e+00 2.6e+03 13 -9.77650e+03 1.463e+03 1.463e+03 9.9e-01 1.9e-04 6.9e+00 3.3e+03 14 -1.02969e+04 1.462e+03 1.462e+03 9.9e-01 4.4e-06 6.9e+00 3.5e+03 15 -9.40104e+03 1.462e+03 1.462e+03 9.9e-01 7.1e-05 6.9e+00 4.3e+03 16 -9.40090e+03 1.462e+03 1.462e+03 9.9e-01 2.8e-06 7.7e+00 4.8e+03 17 -8.73900e+03 1.462e+03 1.462e+03 9.9e-01 9.6e-07 7.7e+00 6.8e+03 18 -8.73951e+03 1.462e+03 1.462e+03 9.9e-01 2.4e-07 7.7e+00 6.8e+03 19 -8.73951e+03 1.462e+03 1.462e+03 9.9e-01 1.3e-07 8.3e+00 7.3e+03 20 -8.73970e+03 1.462e+03 1.462e+03 9.9e-01 8.0e-10 8.5e+00 7.5e+03 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.5e+03 anorm = 8.5e+00 arnorm = 9.9e-06 itn = 20 r2norm = 1.5e+03 acond = 7.5e+03 xnorm = 7.4e+04 RUsage is: 12459460 Finding optimal step size... Finished opt2. Tderiv 2.587426 wall, 2.580000 cpu Topt 3.763696 wall, 3.750000 cpu Tstep 2.671614 wall, 2.660000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.23305278730111098, 0.76694721269888888, 1.6598703000622359, -0.85297902910709678, -10.327331540910736, 42.919744516843693, 8.1207722533663365, 5.1409264429540649, 0.30574471799533981, 26.544125826985159, 23.331035356957123, -21.103133972414497] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.419e+03 1.419e+03 1.0e+00 1.9e-04 1 9.10764e+00 1.415e+03 1.415e+03 1.0e+00 2.3e-04 3.5e+00 1.0e+00 2 -2.96220e+04 1.402e+03 1.402e+03 9.9e-01 2.2e-05 3.5e+00 5.9e+02 3 -3.10933e+04 1.397e+03 1.397e+03 9.8e-01 3.2e-02 3.5e+00 4.1e+03 4 -3.13241e+04 1.396e+03 1.396e+03 9.8e-01 6.7e-06 4.9e+00 6.2e+03 5 -2.91211e+04 1.394e+03 1.394e+03 9.8e-01 5.0e-06 4.9e+00 1.1e+04 6 -2.91212e+04 1.394e+03 1.394e+03 9.8e-01 1.6e-04 4.9e+00 1.1e+04 7 -3.39534e+04 1.392e+03 1.392e+03 9.8e-01 4.2e-06 6.0e+00 2.1e+04 8 -5.93378e+04 1.385e+03 1.385e+03 9.8e-01 3.6e-04 6.0e+00 4.5e+04 9 -5.93389e+04 1.385e+03 1.385e+03 9.8e-01 3.6e-06 6.9e+00 5.1e+04 10 -1.85558e+05 1.368e+03 1.368e+03 9.6e-01 4.4e-06 6.9e+00 9.8e+04 11 -1.85560e+05 1.368e+03 1.368e+03 9.6e-01 4.2e-04 6.9e+00 9.8e+04 12 -1.94404e+05 1.366e+03 1.366e+03 9.6e-01 3.6e-05 7.7e+00 1.1e+05 13 -2.89246e+05 1.357e+03 1.357e+03 9.6e-01 1.2e-06 7.7e+00 1.3e+05 14 -2.89246e+05 1.357e+03 1.357e+03 9.6e-01 7.2e-07 8.3e+00 1.4e+05 15 -1.07155e+05 1.355e+03 1.355e+03 9.6e-01 3.9e-07 8.5e+00 1.8e+05 16 -1.07147e+05 1.355e+03 1.355e+03 9.6e-01 1.3e-04 8.5e+00 1.8e+05 17 1.54879e+04 1.354e+03 1.354e+03 9.5e-01 1.4e-07 9.2e+00 2.4e+05 18 1.50914e+04 1.354e+03 1.354e+03 9.5e-01 4.5e-03 9.2e+00 2.9e+05 19 1.48801e+04 1.354e+03 1.354e+03 9.5e-01 3.3e-06 9.8e+00 3.3e+05 20 1.64682e+04 1.354e+03 1.354e+03 9.5e-01 3.3e-06 9.8e+00 3.4e+05 21 1.62896e+04 1.354e+03 1.354e+03 9.5e-01 3.1e-03 9.8e+00 3.5e+05 22 4.44328e+02 1.349e+03 1.349e+03 9.5e-01 1.1e-06 1.0e+01 8.4e+05 23 -3.79002e+02 1.349e+03 1.349e+03 9.5e-01 4.0e-06 1.0e+01 8.5e+05 24 -3.79001e+02 1.349e+03 1.349e+03 9.5e-01 2.1e-08 1.1e+01 9.0e+05 LSQR finished The iteration limit has been reached istop = 7 r1norm = 1.3e+03 anorm = 1.1e+01 arnorm = 3.1e-04 itn = 24 r2norm = 1.3e+03 acond = 9.0e+05 xnorm = 1.2e+07 RUsage is: 12624132 Finding optimal step size... Finished opt2. Tderiv 2.599955 wall, 2.600000 cpu Topt 4.089196 wall, 4.080000 cpu Tstep 2.897035 wall, 2.880000 cpu Tractor: Finding derivs... getmodelimagefunc(): imj 0 pid 30141 Image Image pic Step sizes: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] p0: [0.23753352529508531, 0.76246647470491469, 1.6484432905688673, -0.84752704924359268, -10.401243367141095, 43.283184829382208, 8.1649706941134941, 5.1745090371550209, 0.31072993527700865, 30.905512033225172, 17.579671167797905, -22.516778327716615] Finding optimal update direction... LSQR Least-squares solution of Ax = b The matrix A has 786432 rows and 12 cols damp = 0.00000000000000e+00 calc_var = 0 atol = 1.00e-08 conlim = 1.00e+08 btol = 1.00e-08 iter_lim = 24 Itn x[0] r1norm r2norm Compatible LS Norm A Cond A 0 0.00000e+00 1.419e+03 1.419e+03 1.0e+00 2.0e-04 1 -2.69856e+01 1.407e+03 1.407e+03 9.9e-01 8.1e-02 2.2e+00 1.0e+00 2 -1.08647e+02 1.397e+03 1.397e+03 9.8e-01 2.5e-02 3.0e+00 2.7e+00 3 -1.12673e+02 1.392e+03 1.392e+03 9.8e-01 9.1e-03 3.2e+00 4.8e+00 4 -1.03751e+02 1.389e+03 1.389e+03 9.8e-01 1.0e-02 3.3e+00 9.4e+00 5 -8.73293e+01 1.382e+03 1.382e+03 9.7e-01 1.1e-02 3.3e+00 1.8e+01 6 -8.39921e+01 1.374e+03 1.374e+03 9.7e-01 1.8e-02 3.4e+00 2.7e+01 7 -9.71216e+01 1.358e+03 1.358e+03 9.6e-01 8.5e-03 3.4e+00 4.1e+01 8 -1.02216e+02 1.355e+03 1.355e+03 9.6e-01 7.9e-04 3.5e+00 4.4e+01 9 -1.15476e+02 1.355e+03 1.355e+03 9.5e-01 1.9e-03 3.5e+00 5.2e+01 10 -1.15444e+02 1.355e+03 1.355e+03 9.5e-01 6.6e-04 4.3e+00 6.5e+01 11 -5.92535e+01 1.348e+03 1.348e+03 9.5e-01 1.6e-04 4.4e+00 2.5e+02 12 -5.95288e+01 1.348e+03 1.348e+03 9.5e-01 1.2e-04 4.6e+00 2.5e+02 13 1.83641e+02 1.347e+03 1.347e+03 9.5e-01 3.3e-05 4.7e+00 3.4e+02 14 1.75865e+02 1.347e+03 1.347e+03 9.5e-01 2.1e-04 4.7e+00 3.5e+02 15 6.59562e+01 1.347e+03 1.347e+03 9.5e-01 2.8e-04 4.7e+00 3.8e+02 16 6.47047e+01 1.347e+03 1.347e+03 9.5e-01 1.5e-06 5.5e+00 4.4e+02 17 6.47053e+01 1.347e+03 1.347e+03 9.5e-01 1.6e-07 5.5e+00 4.5e+02 18 6.47054e+01 1.347e+03 1.347e+03 9.5e-01 1.8e-08 5.6e+00 4.5e+02 19 6.47054e+01 1.347e+03 1.347e+03 9.5e-01 2.9e-09 5.6e+00 4.5e+02 LSQR finished The least-squares solution is good enough, given atol istop = 2 r1norm = 1.3e+03 anorm = 5.6e+00 arnorm = 2.2e-05 itn = 19 r2norm = 1.3e+03 acond = 4.5e+02 xnorm = 9.1e+03 RUsage is: 12791352 Finding optimal step size... Finished opt2. Tderiv 2.571109 wall, 2.570000 cpu Topt 3.614367 wall, 3.600000 cpu Tstep 2.930566 wall, 2.920000 cpu End of psf optimisation {'images': 0, 'catalog': 1}